9.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=$\frac{2x}{x-1}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[2,6]的最大值和最小值.

分析 (Ⅰ)當(dāng)x>0時(shí),-x<0,運(yùn)用已知解析式,結(jié)合奇函數(shù)的定義,可得x>0的解析式,進(jìn)而得到所求函數(shù)f(x)的解析式;
(Ⅱ)首先運(yùn)用定義判斷f(x)在[2,6]的單調(diào)遞減,可得f(x)在[2,6]的最值.

解答 解:(Ⅰ)當(dāng)x>0時(shí),-x<0,f(-x)=$\frac{-2x}{-x-1}$=$\frac{2x}{x+1}$,
由函數(shù)f(x)是定義在R上的奇函數(shù),
可得f(x)=-f(-x)=-$\frac{2x}{x+1}$,x>0.
則f(x)=$\left\{\begin{array}{l}{-\frac{2x}{x+1},x>0}\\{\frac{2x}{x-1},x≤0}\end{array}\right.$;
(Ⅱ)設(shè)x∈[2,6],f(x)=-$\frac{2x}{x+1}$=-2+$\frac{2}{x+1}$,
設(shè)2≤x1<x2≤6,則f(x1)-f(x2)=$\frac{2}{1+{x}_{1}}$-$\frac{2}{1+{x}_{2}}$
=$\frac{2({x}_{2}-{x}_{1})}{(1+{x}_{1})(1+{x}_{2})}$>0,
則f(x1)>f(x2),
故f(x)在[2,6]遞減,
則f(x)在[2,6]的最大值為f(2)=-$\frac{4}{3}$,最小值為f(6)=-$\frac{12}{7}$.

點(diǎn)評 本題考查函數(shù)的奇偶性和單調(diào)性的判斷和運(yùn)用,考查化簡整理的運(yùn)算能力,注意定義法的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正數(shù)a,b,c滿足:5c-3a≤b≤4c-a,clnb≥a+clnc,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義一種運(yùn)算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan$\frac{13π}{4}$,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0≤x0<x1,則f(x1)的值( 。
A.恒為負(fù)值B.等于0C.恒為正值D.不大于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,則a1等于( 。
A.4B.2C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二項(xiàng)式(x2+$\frac{1}{{2\sqrt{x}}}$)n(n∈N*)展開式中,前三項(xiàng)的二項(xiàng)系數(shù)的和是56,求:
(1)求n的值;
(2)展開式中的第七項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等差數(shù)列{an}中,a2=7,a4=15,則前5項(xiàng)的和S5=55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=x2+bx+c的單調(diào)減區(qū)間是(-∞,1],則( 。
A.b≤-2B.b≤-1C.b=-1D.b=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列有關(guān)命題的說法錯(cuò)誤的是(  )
A.命題“同位角相等,兩直線平行”的逆否命題為:“兩直線不平行,同位角不相等”
B.“若實(shí)數(shù)x,y滿足x2+y2=0,則x,y全為0”的否命題為真命題
C.若p∧q為假命題,則p、q均為假命題
D.對于命題p:?x0∈R,${x_0}^2+2{x_0}+2≤0$,則?p:?x∈R,x2+2x+2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題p:指數(shù)函數(shù)f(x)=(2a-6)x在R上單調(diào)遞減,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個(gè)相異實(shí)根均大于3.若p、q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案