精英家教網 > 高中數學 > 題目詳情

【題目】時,若函數的圖象與的圖象有且只有一個交點,則正實數的取值范圍是(

A.B.C.D.

【答案】B

【解析】

根據題意,由二次函數的性質分析可得為二次函數,在區(qū)間 為減函數,在區(qū)間為增函數,兩種情況,結合圖象分析兩個函數的單調性與值域,即可得出正實數的取值范圍.

解:當時,又因為為正實數,

函數的圖象二次函數,

在區(qū)間 為減函數,在區(qū)間為增函數;

函數,是斜率為的一次函數.

最小值為,最大值為;

①當,,

函數在區(qū)間 為減函數,

在區(qū)間 為增函數,

的圖象與的圖象有且只有一個交點,

,

,解得,

所以

②當,,

函數在區(qū)間 為減函數,在區(qū)間為增函數,

在區(qū)間 為增函數,

的圖象與的圖象有且只有一個交點,

,

的圖象與的圖象有且只有一個交點

,

解得

綜上所述:正實數的取值范圍為.

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某城市實施了機動車尾號限行,該市報社調查組為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[5565)

[65,75]

頻數

5

10

15

10

5

5

贊成人數

4

6

9

6

3

4

(Ⅰ)請估計該市公眾對“車輛限行”的贊成率和被調查者的年齡平均值;

)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行追蹤調查,記被選4人中不贊成“車輛限行”的人數為,求隨機變量的分布列和數學期望;

若在這50名被調查者中隨機發(fā)出20份的調查問卷,記為所發(fā)到的20人中贊成“車輛限行”的人數,求使概率取得最大值的整數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司準備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進行連續(xù)30天的試銷.定價為1000/.試銷結束后統(tǒng)計得到該4S店這30天內的日銷售量(單位:件)的數據如下表:

日銷售量

40

60

80

100

頻數

9

12

6

3

1)若該4S店試銷期間每個零件的進價為650/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;

2)試銷結束后,這款零件正式上市,每個定價仍為1000元,但生產公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550/件;小箱每箱有45件,批發(fā)價為600/.4S店決定每天批發(fā)兩箱,根據公司規(guī)定,當天沒銷售出的零件按批發(fā)價的9折轉給該公司的另一下屬4S.假設該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數據如下表:

日銷售量

50

70

90

110

頻數

5

15

8

2

(。┰O該4S店試銷結束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;

(ⅱ)以總利潤作為決策依據,該4S店試銷結束后連續(xù)30天每天應該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長為3的線段的兩端點,分別在軸和軸上移動,.

1)求點的軌跡的方程.

2)過作互相垂直的兩條直線分別與軌跡交于,,,設中點為,中點為,試探究直線是否過定點?若是,求出該定點;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=2cosxsinx+2φ)為偶函數,其中φ∈(0),則下列關于函數gx)=sin2x+φ)的描述正確的是(

A.gx)在區(qū)間[]上的最小值為﹣1

B.gx)的圖象可由函數fx)的圖象向上平移一個單位,再向右平移個單位長度得到

C.gx)的圖象的一個對稱中心為(,0

D.gx)的一個單調遞增區(qū)間為[0]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中

1)當時,求曲線在點處的切線方程;

2)若函數存在最小值,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,底面是正方形,底面,,、、分別是棱、、的中點,對于平面截四棱錐所得的截面多邊形,有以下三個結論:

①截面的面積等于;

②截面是一個五邊形;

③截面只與四棱錐四條側棱中的三條相交.

其中,所有正確結論的序號是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,過點且不過點的直線與橢圓交于兩點,直線與直線交于點

(Ⅰ)若垂直于軸,求直線的斜率;

(Ⅱ)試判斷直線與直線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗次.二是混合檢驗,將其中份血液樣本分別取樣混合在一起,若檢驗結果為陰性,那么這份血液全為陰性,因而檢驗一次就夠了;如果檢驗結果為陽性,為了明確這份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時份血液檢驗的次數總共為次.某定點醫(yī)院現取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設在接受檢驗的血液樣本中,每份樣本檢驗結果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為

(Ⅰ)求把2份血液樣本混合檢驗結果為陽性的概率;

(Ⅱ)若檢驗次數的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個最“優(yōu)”?請說明理由.

查看答案和解析>>

同步練習冊答案