A. | $\frac{2}{3}$ | B. | $\frac{1}{9}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | $\frac{4\sqrt{5}}{9}$ |
分析 由已知利用余弦定理可求cosC的值,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求sinC的值.
解答 解:在△ABC中,∵AB=4,AC=BC=3,
∴cosC=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2AC•BC}$=$\frac{{3}^{2}+{3}^{2}-{4}^{2}}{2×3×3}$=$\frac{1}{9}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{4\sqrt{5}}{9}$.
故選:D.
點(diǎn)評(píng) 本題主要考查了余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于y軸對(duì)稱 | B. | 關(guān)于原點(diǎn)對(duì)稱 | ||
C. | 關(guān)于直線x+y=0對(duì)稱 | D. | 關(guān)于直線x-y=0對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f′(x)>0,g′(-x)>0 | B. | f′(x)>0,g′(-x)<0 | C. | f′(x)<0,g′(-x)>0 | D. | f′(x)<0,g′(-x)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -2 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com