15.九九重陽節(jié)期間,學(xué)校準(zhǔn)備舉行慰問退休老教師晚會,學(xué)生們準(zhǔn)備用歌曲、小品、相聲三種藝術(shù)形式表演五個節(jié)目,其中歌曲有2個節(jié)目,小品有2個節(jié)目,相聲有1個節(jié)目,要求相鄰的節(jié)目藝術(shù)形式不能相同,則不同的編排種數(shù)為( 。
A.96B.72C.48D.24

分析 根據(jù)題意可以分三類,根據(jù)分類計數(shù)原理可得.

解答 解:第一類,先選擇一個小品插入到2個歌曲之間另一個小品放在歌曲的兩邊,這時形成了5個空,
將相聲插入其中一個,故有A22A21A21A51=40種,
第二類,相聲插入歌曲之間,再把小品插入歌曲兩邊,有A22A22=4種,
第三類,相聲插入小品之間,再把歌曲插入小品兩邊,有A22A22=4種,
根據(jù)分類計數(shù)原理可得,共有40+4+4=48,
故選:C

點評 本題考查有特殊要求的排列問題,安排不相連,用插空法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=({x-1}){e^x}+\frac{a}{2}{x^2}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a∈[-e,0],證明:函數(shù)f(x)只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)z=x+y,其中x,y滿足$\left\{\begin{array}{l}x+2y≥0\\ 2x-y≤0\\ 0≤y≤m\end{array}\right.$,若z的最大值為12,則z的最小值為( 。
A.-8B.-6C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若sinθ,cosθ是方程4x2+2mx+m=0的兩根,則m的值為( 。
A..$1+\sqrt{5}$B..$1-\sqrt{5}$C.$.1±\sqrt{5}$D..$-1-\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了判斷高中生的文理科選修是否與性別有關(guān),隨機調(diào)查了50名學(xué)生,得到如下2×2列聯(lián)表:
 理科文科
1410
620
(1)畫出列聯(lián)表的等高條形圖,并通過圖形判斷文理科選修與性別是否有關(guān)?
(2)利用列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.05的前提下認(rèn)為選修文理科與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下面使用類比推理正確的是( 。
A.“若a•3=b•3,則a=b”類比推出“若$\overrightarrow{a}•0=\overrightarrow•0$,則$\overrightarrow a=\overrightarrow b$”
B.“(a+b)c=ac+bc”類比推出“$({\overrightarrow a•\overrightarrow b})\overrightarrow c=\overrightarrow a\overrightarrow c•\overrightarrow b\overrightarrow c$”
C.“(a+b)c=ac+bc”類比推出“$({\overrightarrow a+\overrightarrow b})•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”
D.“(ab)n=anbn”類比推出“($\overrightarrow{a}$+$\overrightarrow$)n=$\overrightarrow{a}$n+$\overrightarrow$n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i是虛數(shù)單位,且復(fù)數(shù)z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是實數(shù),則實數(shù)b的值為( 。
A.6B.-6C.0D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.我們知道平方運算和開方運算是互逆運算,如:a2±2ab+b2=(a±b)2,那么$\sqrt{{a}^{2}±2ab+^{2}}$=|a±b|,那么如何將雙重二次根式$\sqrt{a±2\sqrt}$(a>0,b>0,a±2$\sqrt$>0)化簡呢?如能找到兩個數(shù)m,n(m>0,n>0),使得($\sqrt{m}$)2+($\sqrt{n}$)2=a即m+n=a,且使$\sqrt{m}$•$\sqrt{n}$=$\sqrt$即m•n=b,那么a±2$\sqrt$=(($\sqrt{m}$)2+($\sqrt{n}$)2±2$\sqrt{m}•\sqrt{n}$=($\sqrt{m}±\sqrt{n}$)2
∴$\sqrt{a±2\sqrt}$=|$\sqrt{m}±\sqrt{n}$|,雙重二次根式得以化簡;例如化簡:$\sqrt{3+2\sqrt{2}}$; Q3=1+2且2=1×2,
∴3+2$\sqrt{2}$=($\sqrt{1}$)2+($\sqrt{2}$)2+2$\sqrt{1}$×$\sqrt{2}$
∴$\sqrt{3+2\sqrt{2}}$=1+$\sqrt{2}$.
由此對于任意一個二次根式只要可以將其化成$\sqrt{a±2\sqrt}$的形式,且能找到m,n(m>0,n>0)使得m+n=a,且m•n=b,那么這個雙重二次根式一定可以化簡為一個二次根式.請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)填空:$\sqrt{5-2\sqrt{6}}$=$\sqrt{3}$-$\sqrt{2}$;$\sqrt{12+2\sqrt{35}}$=$\sqrt{7}$+$\sqrt{5}$;   
(2)化簡:
①$\sqrt{9+6\sqrt{2}}$;               
 ②$\sqrt{16-4\sqrt{15}}$;
(3)計算:$\sqrt{3-\sqrt{5}}$+$\sqrt{2+\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c,若向量$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,cos$\frac{C}{2}$),且$\overrightarrow{m}$與$\overrightarrow{n}$的角為$\frac{π}{3}$.
(1)求角C的值;
(2)已知邊$c=\frac{7}{2}$,△ABC的面積$S=\frac{{3\sqrt{3}}}{2}$,求a+b的值.

查看答案和解析>>

同步練習(xí)冊答案