10.為了判斷高中生的文理科選修是否與性別有關(guān),隨機(jī)調(diào)查了50名學(xué)生,得到如下2×2列聯(lián)表:
 理科文科
1410
620
(1)畫出列聯(lián)表的等高條形圖,并通過圖形判斷文理科選修與性別是否有關(guān)?
(2)利用列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為選修文理科與性別有關(guān)?

分析 (1)畫出列聯(lián)表的等高條形圖,根據(jù)圖形得出結(jié)論;
(2)計(jì)算觀測(cè)值K2,對(duì)照臨界值表得出概率結(jié)論.

解答 解:(1)畫出列聯(lián)表的等高條形圖如下,

根據(jù)圖形得出,
報(bào)文科的學(xué)生中,女生占$\frac{20}{30}$=$\frac{2}{3}$;
報(bào)理科的學(xué)生中,女生占$\frac{6}{20}$=$\frac{3}{10}$;
兩者差異明顯,故選報(bào)文理科與性別有關(guān)系;
(2)利用列聯(lián)表的獨(dú)立性檢驗(yàn),計(jì)算觀測(cè)值
K2=$\frac{50(14×20-6×10)^{2}}{20×30×24×26}$≈6.464>3.814,
所以,可以在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為選修文科與性別有關(guān).

點(diǎn)評(píng) 本題考查了列聯(lián)表的等高條形圖和獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{x+2y-1}{x+1}$的最大值為( 。
A.$\frac{3}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i是虛數(shù)單位,復(fù)數(shù)z=(3+i)(1-i)對(duì)應(yīng)的點(diǎn)在第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某高校數(shù)學(xué)系2016年高等代數(shù)試題有6個(gè)題庫,其中3個(gè)是新題庫(即沒有用過的題庫),3個(gè)是舊題庫(即至少用過一次的題庫),每次期末考試任意選擇2個(gè)題庫里的試題考試.
(1)設(shè)2016年期末考試時(shí)選到的新題庫個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)已知2016年時(shí)用過的題庫都當(dāng)作舊題庫,求2017年期末考試時(shí)恰好到1個(gè)新題庫的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=x2+2mx+(2m+1).
(1)若f(x)=0得兩根分別為某三角形兩內(nèi)角的正弦值,求m的取值范圍;
(2)問是否存在實(shí)數(shù)m,使得f(x)=0的兩根是直角三角形兩個(gè)銳角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.九九重陽節(jié)期間,學(xué)校準(zhǔn)備舉行慰問退休老教師晚會(huì),學(xué)生們準(zhǔn)備用歌曲、小品、相聲三種藝術(shù)形式表演五個(gè)節(jié)目,其中歌曲有2個(gè)節(jié)目,小品有2個(gè)節(jié)目,相聲有1個(gè)節(jié)目,要求相鄰的節(jié)目藝術(shù)形式不能相同,則不同的編排種數(shù)為( 。
A.96B.72C.48D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知sinα=$\frac{12}{13}$,cosβ=$\frac{4}{5}$,且α是第二象限角,β是第四象限角,那么sin(α-β)等于( 。
A.$\frac{33}{65}$B.$\frac{63}{65}$C.-$\frac{16}{65}$D.-$\frac{56}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}的公差d=2,前n項(xiàng)和為Sn,等比數(shù)列{bn}滿足b1=a1,b2=a4,b3=a13
(1)求an,bn;
(2)記數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知θ∈(0,π),且sinθ,cosθ是關(guān)于x的方程 5x2-x+m=0的根,求sinθ•cosθ和sin3θ+cos3θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案