(本題滿(mǎn)分15分)
已知曲線(xiàn)C上的動(dòng)點(diǎn)滿(mǎn)足到點(diǎn)的距離比到直線(xiàn)的距離小1.
求曲線(xiàn)C的方程;過(guò)點(diǎn)F的直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn).(ⅰ)過(guò)A、B兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),設(shè)其交點(diǎn)為M,證明;(ⅱ)是否在y軸上存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng),都有?證明你的結(jié)論.
(Ⅰ)     (Ⅱ)  (ⅰ)略(ⅱ)
1)依題意有,由顯然
,化簡(jiǎn)得;     
(2)(。 設(shè)AB:y=kx+1,
  ,    
拋物線(xiàn)方程為 
所以過(guò)拋物線(xiàn)上AB兩點(diǎn)的切線(xiàn)斜率分別, ,
     10分
(ⅱ)設(shè)點(diǎn),此時(shí)
由(。┛芍
對(duì)一切k恒成立
當(dāng),即時(shí),使得無(wú)論AB怎樣運(yùn)動(dòng),都有 15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知橢圓,它的離心率為,直線(xiàn)與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.⑴求橢圓的方程;⑵設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線(xiàn)為,動(dòng)直線(xiàn)垂直于直線(xiàn),垂足為點(diǎn),線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),求動(dòng)點(diǎn)的軌跡的方程;⑶將曲線(xiàn)向右平移2個(gè)單位得到曲線(xiàn),設(shè)曲線(xiàn)的準(zhǔn)線(xiàn)為,焦點(diǎn)為,過(guò)作直線(xiàn)交曲線(xiàn)兩點(diǎn),過(guò)點(diǎn)作平行于曲線(xiàn)的對(duì)稱(chēng)軸的直線(xiàn),若,試證明三點(diǎn)為坐標(biāo)原點(diǎn))在同一條直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)相交于A、B兩點(diǎn),M是線(xiàn)段AB上的一點(diǎn),,且點(diǎn)M在直線(xiàn)上.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若橢圓的焦點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在單位圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn),直線(xiàn)兩點(diǎn),是線(xiàn)段的中點(diǎn),過(guò)軸的垂線(xiàn)交于點(diǎn).(1)證明:拋物線(xiàn)在點(diǎn)處的切線(xiàn)與平行;(2)是否存在實(shí)數(shù)使NANB,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知圓Ox2+y2=2交x軸于AB兩點(diǎn),點(diǎn)P(-1,1)為圓O上一點(diǎn).曲線(xiàn)C是以AB為長(zhǎng)軸,離心率為的橢圓,點(diǎn)F為其右焦點(diǎn).

過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交橢圓C的右準(zhǔn)線(xiàn)l于點(diǎn)Q
(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)證明:直線(xiàn)PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)設(shè)直線(xiàn). 若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有. 則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.(Ⅰ)已知函數(shù).求證:為曲線(xiàn)的“上夾線(xiàn)”.
(Ⅱ)觀察下圖:
          
根據(jù)上圖,試推測(cè)曲線(xiàn)的“上夾線(xiàn)”的方程,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,點(diǎn)滿(mǎn)足,記點(diǎn)的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線(xiàn)過(guò)點(diǎn)且與軌跡交于兩點(diǎn). (i)設(shè)點(diǎn),問(wèn):是否存在實(shí)數(shù),使得直線(xiàn)繞點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.(ii)過(guò)作直線(xiàn)的垂線(xiàn)、,垂足分別為、,記
,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)C:x2-y2=1,l:y=kx+1
(1)求直線(xiàn)L的斜率的取值范圍,使L與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒(méi)有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在,若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊(cè)答案