【題目】已知函數(shù).
(1)當時,求的值域;
(2)當時,函數(shù)的圖象關(guān)于對稱,求函數(shù)的對稱軸.
(3)若圖象上有一個最低點,如果圖象上每點縱坐標不變,橫坐標縮短到原來的倍,然后向左平移1個單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.
【答案】(1);(2);(3).
【解析】
分析:(1)時,值域為,時,利用三角函數(shù)的有界性可得結(jié)果;(2)由時,函數(shù)的圖象關(guān)于對稱,利用輔助角公式可得關(guān)于的方程從而可求出的值,進而確定函數(shù)的解析式,由兩角和的正弦公式將其化為一個角的三角函數(shù),利用正弦函數(shù)的對稱性求解即可;(3)根據(jù)圖象上有一個最低點,結(jié)合輔助角公式可求得,從而得,由,分類討論,排除不合題意的,從而可得結(jié)果.
詳解:(1)當b=0時,函數(shù)g(x)=asinx+c.
當a=0時,值域為:{c}.
當a≠0時,值域為:[c﹣|a|,c+|a|].(
(2)當a=1,c=0時,
∵g(x)=sinx+bcosx 且圖象關(guān)于x=對稱,
∴||=,∴b=﹣.
∴函數(shù) y=bsinx+acosx 即:y=﹣sinx+cosx= cos(x+).
由 x+=kπ,k∈z,可得函數(shù)的對稱軸為:x=kπ﹣,k∈z.
(3)由g(x)=asinx+bcosx+c= sin(x+)+c,其中,sin=,cos=.
由g(x)圖象上有一個最低點 (,1),所以,
∴,
∴g(x)=(c﹣1)sin(x﹣)+c.
又圖象上每點縱坐標不變,橫坐標縮短到原來的倍,然后向左平移1個單位可得y=f(x)的圖象,則f(x)=(c﹣1)sinx+c.
又∵f(x)=3的所有正根從小到大依次為 x1、x2、x3…xn、…,且 xn﹣xn﹣1=3 (n≥2 ),
所以y=f(x)與直線y=3的相鄰交點間的距離相等,根據(jù)三角函數(shù)的圖象與性質(zhì),直線y=3要么過f(x)的最高點或最低點,要么是y=,
即:2c﹣1=3或 1﹣c+c=3(矛盾)或 =3,解得c=2 或 c=3.
當c=2時,函數(shù)的 f(x)=sin+2,T=6.
直線 y=3和 f(x)=sin+2相交,且 xn﹣xn﹣1=3 (n≥2 ),周期為3(矛盾).
當c=3時,函數(shù) f(x)=2sin+3,T=6.
直線直線 y=3和 f(x)=2sin+3相交,且 xn﹣xn﹣1=3 (n≥2 ),周期為6(滿足條件).
綜上:f(x)=2sin+2.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點是橢圓:的短軸位于軸下方的端點,過作斜率為1的直線交橢圓于點,點在軸上,且軸, .
(1)若點的坐標為,求橢圓的方程;
(2)若點的坐標為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一動圓與圓外切,與圓內(nèi)切.
(1)求動圓圓心的軌跡的方程.
(2)設(shè)過圓心的直線與軌跡相交于兩點,(為圓的圓心)的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意 ,都有xln(kx)﹣kx+1≤mx,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足 ?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說明理由;
(3)求的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點,直線l:(其中).
(Ⅰ)求直線l所經(jīng)過的定點P的坐標;
(Ⅱ)若分別過A,B且斜率為的兩條平行直線截直線l所得線段的長為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com