19.已知函數(shù)f(x)=$\frac{{a{x^2}+bx+c}}{e^x}$(a>0)的導(dǎo)函數(shù)y=f′(x)的兩個零點為0和3.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的極大值為$\frac{10}{e^3}$,求函數(shù)f(x)在區(qū)間[0,5]上的最小值.

分析 (1)先求導(dǎo),在根據(jù)函數(shù)的零點得到:-ax2+(2a-b)x+b-c=0的兩根為0,3,根據(jù)韋達定理即可求出a,b,c的關(guān)系,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出單調(diào)增區(qū)間,
(2)根據(jù)函數(shù)的單調(diào)性即可求出函數(shù)在閉區(qū)間上的最小值.

解答 解:f′(x)=$\frac{{-a{x^2}+({2a-b})x+b-c}}{e^x}$
令g(x)=-ax2+(2a-b)x+b-c
函數(shù)y=f′(x)的零點即g(x)=-ax2+(2a-b)x+b-c的零點
即:-ax2+(2a-b)x+b-c=0的兩根為0,3
則$\left\{\begin{array}{l}3=\frac{2a-b}{a}\\ o=b-c\end{array}\right.$解得:b=c=-a,
令f′(x)>0得0<x<3
所以函數(shù)的f(x)的單調(diào)遞增區(qū)間為(0,3),
(2)由(1)得:$f(x)=\frac{{a{x^2}-ax-a}}{e^x}$
函數(shù)在區(qū)間(0,3)單調(diào)遞增,在(3,+∞)單調(diào)遞減,
∴$f{(x)_{極大}}=f(3)=\frac{5a}{e^3}=\frac{10}{e^3}$,
∴a=2,
∴$f(0)=\frac{-a}{e^0}=-2$;  $f(5)=\frac{19a}{e^5}=\frac{38}{e^5}>0$,
∴函數(shù)f(x)在區(qū)間[0,4]上的最小值為-2.

點評 本題考查了韋達定理和導(dǎo)數(shù)函數(shù)的最值以及單調(diào)性的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁UA)∩B=∅,求m的值.
(2)設(shè)集合A={x|-2≤x≤5},B={x|n+1≤x≤2n-1},B⊆A,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過點(1,2)且與點A(2,3)和點B(4,-5)距離相等的直線l的方程是3x+2y-7=0或4x+y-6=0(請寫一般式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+4x+3,
(1)若f(a+1)=0,求a的值;
(2)若g(x)=f(x)+cx為偶函數(shù),求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x∈($\frac{π}{4}$,$\frac{π}{2}$),則$\frac{sin2x}{{{{sin}^2}x+4{{cos}^2}x}}$的最大值為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的前n項和為Sn,且滿足an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,若a1=2,則{an}的前2017項的積為( 。
A.1B.2C.-6D.-586

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線$\frac{{\sqrt{3}}}{3}$x+y=0的傾斜角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對于實數(shù)a,b,c,有下列命題:
①若a>b>0,則a+$\frac{1}$>b+$\frac{1}{a}$;
②若ac2>bc2,則a>b;
③若a>b>0,則$\frac{a}$<$\frac{a+1}{b+1}$;
④若a>b,$\frac{1}{a}$>$\frac{1}$,則a>0,b<0.
其中真命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知正項數(shù)列{an}的前n項和為Sn,且$\sqrt{{S}_{n}}$是1與an的等差中項.
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)求數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案