【題目】如圖,三棱柱中,側面為的菱形, .
(1)證明:平面平面.
(2)若,直線與平面所成的角為,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2) .
【解析】【試題分析】(1) 連接交于,連接,根據(jù)菱形的幾何性質與等腰三角形的幾何性質可知, ,由此證得 平面,故平面 平面.(2) 以為坐標原點, 的方向為軸正方向建立空間直角坐標系,通過計算直線的方向向量與平面的法向量,來求得直線與平面所成角的正弦值.
【試題解析】
(1)連接交于,連接
側面為菱形,
, 為的中點,
又, 平面
平面 平面 平面.
(2)由, , , 平面, 平面
從而, , 兩兩互相垂直,以為坐標原點, 的方向為軸正方向,建立如圖所示空間直角坐標系
直線與平面所成的角為,
設,則,又, △是邊長為2的等邊三角形
,
設是平面的法向量,則即
令則
設直線與平面所成的角為
則
直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線:,已知過點的直線的參數(shù)方程為: (為參數(shù)),直線與曲線分別交于兩點.
(1)寫出曲線和直線的普通方程;
(2)若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列敘述中正確的是( )
A. 若,則“”的充分條件是“”
B. 若,則“”的充要條件是“”
C. 命題“”的否定是“”
D. 是等比數(shù)列,則是為單調(diào)遞減數(shù)列的充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)可知與具有線性相關關系,請建立關于的回歸方程(系數(shù)精確到);
(2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量, ,則每位員工每日獎勵100元; ,則每位員工每日獎勵150元; ,則每位員工每日獎勵200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約多少元.(當月獎勵金額總數(shù)精確到百分位)
參考數(shù)據(jù): , ,其中, 分別為第個月的促銷費用和產(chǎn)品銷量, .
參考公式:
(1)對于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計分別為, .
(2)若隨機變量服從正態(tài)分布,則, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=excos x-x.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在圖所示的五面體中,面ABCD為直角梯形,,平面平面ABCD,,,是邊長為2的正三角形.
證明:平面ACF;
若點P在線段EF上,且二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面, .
()求證: 平面.
()若二面角為直二面角,
(i)求直線與平面所成角的大小.
(ii)棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求定義域,并判斷函數(shù)f(x)的奇偶性;
(2)若f(1)+f(2)=0,證明函數(shù)f(x)在(0,+∞)上的單調(diào)性,并求函數(shù)f(x)在區(qū)間[1,4]上的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com