7.等差數(shù)列{an}滿足a3-a1=2,a5=5,則前4項和S4=(  )
A.6B.8C.10D.12

分析 由題意求得公差,結(jié)合a5=5求得首項,再代入等差數(shù)列的前n項和公式得答案.

解答 解:在等差數(shù)列{an}中,由a3-a1=2,得2d=2,d=1,
又a5=5,∴a1=a5-4d=5-4×1=1,
∴${S}_{4}=4×1+\frac{4×3×1}{2}=10$.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex•[-x2+(4a+2)x-3a2-4a-2],其中e為自然對數(shù)的底數(shù).
(1)當(dāng)a≠0時,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)0<a<1時,記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若x∈[1-a,1+a]時,恒有|f′(x)|≤a•ex成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,三棱錐C-ADB中,CA=CD=AB=BD=2,AD=2$\sqrt{3}$,BC=1,則二面角C-AD-B的平面角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(ax2-lnx)(x-lnx)(a∈R).
(1)當(dāng)a=6時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)A(-3,-4),B(5,-12).
(1)求$\overrightarrow{AB}$的坐標(biāo)及$\left|\overrightarrow{AB}$|;
(2)$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,$\overrightarrow{OD}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$,求$\overrightarrow{OC}$及$\overrightarrow{OD}$的坐標(biāo);
(3)求$\overrightarrow{OA}$,$\overrightarrow{OB}$所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程x2+y2=4變換為橢圓方程x′2+$\frac{y{′}^{2}}{4}$=1,此伸縮變換公式是(  )
A.$\left\{\begin{array}{l}{x=\frac{1}{2}x′}\\{x=y′}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2x′}\\{y=y′}\end{array}\right.$C.$\left\{\begin{array}{l}{y=4x′}\\{y=y′}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2x′}\\{y=4y′}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.曲線y=x2-3x和y=x圍成的圖形面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2-|x|,若f(log3(m+1))<f(2),則實(shí)數(shù)m的取值范圍是(-$\frac{8}{9}$,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=(x-k)ex(k∈R).
(Ⅰ)若f(x)在區(qū)間(-1,1)上是增函數(shù),求k的取值范圍;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值;
(Ⅲ)若k=0,是否存在實(shí)數(shù)a,使得對任意的x1,x2∈(a,+∞),當(dāng)x1<x2時,恒有x1(f(x2)-f(a))-x2(f(x1)-f(a))>a(f(x2)-f(x1))成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案