分析 (1)由等比數(shù)列等比中項(xiàng)的性質(zhì)可知:(a1+d)(a1+13d)=(a1+4d)2,由d>0,代入即可求得d=2,根據(jù)等差數(shù)列通項(xiàng)公式,即可求得數(shù)列{an}的通項(xiàng)公式;
(2)bn=$\frac{1}{n({a}_{n}+3)}$=$\frac{1}{2n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),采用“裂項(xiàng)法”即可求得Sn.
解答 解:(1)由題意得(a1+d)(a1+13d)=(a1+4d)2,
整理得:2a1d=d2.
∵d>0,
∴d=2.
∵a1=1.
∴an=2n-1 (n∈N+).
(2)bn=$\frac{1}{n({a}_{n}+3)}$=$\frac{1}{2n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=b1+b2+…+bn,
=$\frac{1}{2}$[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…($\frac{1}{n}$-$\frac{1}{n+1}$)],
=$\frac{1}{2}$[1-$\frac{1}{n+1}$],
=$\frac{n}{2(n+1)}$,
∴Sn=$\frac{n}{2(n+1)}$.
點(diǎn)評(píng) 本題考查等比數(shù)列等比中項(xiàng),等差數(shù)列通項(xiàng)公式,考查采用“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
C. | y=$\frac{x^2+3}{\sqrt{x^2+2}}$ | D. | y=$\sqrt{x-1}$+$\frac{1}{{\sqrt{x-1}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 168 | C. | 9 | D. | 169 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $log_2{\frac{15}{2}}$ | C. | 1 | D. | $-log_2{\frac{15}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com