A. | x2+x-3=0 | B. | ex-x-1=0 | C. | x-3+ln(x+1)=0 | D. | x2-lgx=0 |
分析 利用方程和函數(shù)之間的關(guān)系分別進行判斷即可得到結(jié)論.
解答 解:A.設(shè)f(x)=x2+x-3,則函數(shù)f(x)在(0,1)內(nèi)單調(diào)遞增,則f(1)=1+1-3=-1<0,f(x)在(0,1)內(nèi)不存在零點;
B.由ex-x-1=0,解得x=0,在區(qū)間(-1,1)內(nèi),滿足題意;
C.設(shè)f(x)=x-3+ln(x+1),則函數(shù)在(-1,1)上單調(diào)遞增,f(1)<0,f(x)在(-1,1)內(nèi)不存在零點;D.當(dāng)x∈(0,1)時,x2∈(0,1),lgx∈(-∞,0),則x2-lgx>0,此時方程在(-1,1)內(nèi)無解,
故選B.
點評 本題主要考查函數(shù)零點的判斷,根據(jù)函數(shù)和方程之間的關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{8}$ | B. | $\frac{25}{2}$ | C. | 2 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com