15.下列函數(shù)中,是奇函數(shù)且在(0,+∞)上單調(diào)遞減的是( 。
A.y=x-1B.y=($\frac{1}{2}$)xC.y=x3D.$y={log_{\frac{1}{2}}}x$

分析 根據(jù)題意,依次分析選項:對于A、由反比例函數(shù)的性質(zhì)可得其符合題意;對于B、不是奇函數(shù),不符合題意;對于C、y=x3不符合單調(diào)性的要求,對于D、y=$lo{g}_{\frac{1}{2}}x$不是奇函數(shù),不符合題意;綜合可得答案.

解答 解:根據(jù)題意,依次分析選項:
對于A、y=x-1=$\frac{1}{x}$,是奇函數(shù),且其在(0,+∞)上單調(diào)遞減,符合題意;
對于B、y=($\frac{1}{2}$)x是指數(shù)函數(shù),不是奇函數(shù),不符合題意;
對于C、y=x3是冪函數(shù),是奇函數(shù)但其在(0,+∞)上單調(diào)遞增,不符合題意;
對于D、y=$lo{g}_{\frac{1}{2}}x$是對數(shù)函數(shù),不是奇函數(shù),不符合題意;
故選:A.

點評 本題考查函數(shù)奇偶性與單調(diào)性的判定,關(guān)鍵是熟悉常見函數(shù)的奇偶性、單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=(4,2),若$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$,λ、μ∈R,則λ+μ=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱是AA′,CC′的中點,過直線EF的平面分別與棱BB′,DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下四種說法:
(1)平面MENF⊥平面BDD′B′;
(2)當(dāng)且僅當(dāng)x=$\frac{1}{2}$時,四邊形MENF的面積最。
(3)四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
(4)四棱錐C′-MENF的體積V=h(x)為常函數(shù),以上說法中正確的為( 。
A.(2)(3)B.(1)(3)(4)C.(1)(2)(3)D.(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知不等式ax2+5x+b<0的解集為{x|-3<x<2},則不等式bx2+5x+a>0的解集為(-$\frac{1}{3}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.給出下列8種圖象變換方法:
①圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的$\frac{1}{2}$;
②圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍;
③圖象上所有點的橫坐標(biāo)不變,縱坐標(biāo)縮短到原來的$\frac{1}{2}$;
④圖象上所有點的橫坐標(biāo)不變,縱坐標(biāo)伸長到原來的2倍;
⑤圖象向右平移$\frac{π}{3}$個單位;     
⑥圖象向左平移$\frac{π}{3}$個單位;
⑦圖象向右平移$\frac{2π}{3}$個單位;     
⑧圖象向左平移$\frac{2π}{3}$個單位.
請選擇上述變換方法中的部分變換方法并按照一定順序排列將函數(shù)y=sinx的圖象變換到函數(shù)$y=\frac{1}{2}sin(\frac{x}{2}+\frac{π}{3})$的圖象,要求寫出每一種變換后得到的函數(shù)解析式.(只需給出一種方法即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.空氣質(zhì)量指數(shù)(AirQualityIndex,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù).AQI數(shù)值越小,說明空氣質(zhì)量越好.某地區(qū)1月份平均AQI(y)與年份(x)具有線性相關(guān)關(guān)系.下列最近3年的數(shù)據(jù):
 年份 2014 2015 2016
 1月份平均AQI(y) 76 68 48
根據(jù)數(shù)據(jù)求得y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=-14x+a,則可預(yù)測2017年1月份該地區(qū)的平均AQI為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2,三月底測得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關(guān)系有兩個函數(shù)模型y=kax(k>0,a>1)與y=px${\;}^{\frac{1}{2}}$+q(p>0)可供選擇.
(Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份.
(參考數(shù)據(jù):lg2≈0.3010,lg3≈0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.2+4$\sqrt{3}$B.4+4$\sqrt{3}$C.8+2$\sqrt{3}$D.6+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,△A'O'B'為水平放置的△AOB的直觀圖,且O'A'=2,O'B'=3,則△AOB的周長為(  )
A.12B.10C.8D.7

查看答案和解析>>

同步練習(xí)冊答案