3.已知橢圓x2+2y2=1上存在兩點(diǎn)A,B關(guān)于直線L:y=4x+b對稱,求實(shí)數(shù)b的取值范圍.

分析 將A,B坐標(biāo)代入橢圓方程,利用作差法,求得直線AB的斜率,由直線AB的斜率為-$\frac{1}{4}$,代入求得AB中點(diǎn)M(x0,y0),橫坐標(biāo)和縱坐標(biāo)與m的關(guān)系,代入x2+2y2<1,即可求得b的取值范圍.

解答 解:∵橢圓x2+2y2=1,焦點(diǎn)在x軸上,
設(shè)橢圓上兩點(diǎn)A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+b對稱,
AB中點(diǎn)為M(x0,y0),直線AB的斜率為-$\frac{1}{4}$
則x12+2y12=1,①
x22+2y22=1,②
①-②得:(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0,
由中點(diǎn)坐標(biāo)公式可知:x1+x2=2x0,y1+y2=2y0,
即 2x0•(x1-x2)+2•2y0•(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$•$\frac{{y}_{0}}{{x}_{0}}$=-$\frac{1}{4}$.
∴y0=$\frac{1}{2}$x0,代入直線方程y=4x+b得x0=-$\frac{2}{7}$b,y0=-$\frac{1}{7}$b;
∵(x0,y0)在橢圓內(nèi)部,
∴$\frac{4^{2}}{49}$+2×$\frac{^{2}}{49}$<1,即6b2<49,
解得-$\frac{7\sqrt{6}}{6}$<b<$\frac{7\sqrt{6}}{6}$.
實(shí)數(shù)b的取值范圍(-$\frac{7\sqrt{6}}{6}$,$\frac{7\sqrt{6}}{6}$).

點(diǎn)評 本題考查作差法求弦的直線方程的斜率,點(diǎn)與橢圓的位置關(guān)系,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線AB:x+y-6=0與拋物線y=x2及x軸正半軸圍成的圖形為Ω,若從Rt△AOB區(qū)域內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M取自圖形Ω的概率為$\frac{16}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.隨著人口老齡化的到來,我國的勞動力人口在不斷減少,”延遲退休“已經(jīng)成為人們越來越關(guān)注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡[20,25)[25,30)[30,35)[35,40)[40,45)
人數(shù)45853
年齡[45,50)[50,55)[55,60)[60,65)[65,70)
人數(shù)67354
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(Ⅰ)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={x|(x+4)(x+1)<0},集合B={x|x<-2},則A∩(∁RB)等于( 。
A.(-2,-1)B.[-2,4)C.[-2,-1)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}$在區(qū)間(0,4)內(nèi)任取一個為x,則不等式log2x-(log${\;}_{\frac{1}{4}}$4x-1)f(log3x+1)≤$\frac{7}{2}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列命題是真命題的有④⑤
①平面內(nèi)與兩個定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;
②如果向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是三個不共線的向量,$\overrightarrow{a}$是空間任一向量,那么存在唯一一組實(shí)數(shù)λ1,λ2,λ3使得$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$+λ3$\overrightarrow{{e}_{3}}$;
③方程y=$\sqrt{x}$與x=y2表示同一曲線;
④若命題p是命題q的充分非必要條件,則¬p是¬q的必要非充分條件;
⑤方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{2-m}$=1表示雙曲線的充要條件是2<m<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列推斷錯誤的個數(shù)是( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
②命題“若x2=1,則x=1”的否命題為:若“x2=1,則x≠1”
③“x<1”是“x2-3x+2>0”的充分不必要條件
④若p∧q為假命題,則p,q均為假命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{x-3}{x+3}$,g(x)=x+3,則f(x)•g(x)=x-3,(x∈(-∞,-3)∪(-3,+∞)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=ax3+bx+5,其中a,b為常數(shù),若f(-9)=-7,則f(9)=( 。
A.17B.7C.16D.8

查看答案和解析>>

同步練習(xí)冊答案