已知兩個盒子中分別裝有標記為,,,的大小相同的四個小球,甲從盒中等可能地取出個球,乙從盒中等可能地取出個球.
(1)用有序數(shù)對表示事件“甲抽到標號為的小球,乙抽到標號為的小球”,試寫出所有可能的事件;
(2)甲、乙兩人玩游戲,約定規(guī)則:若甲抽到的小球的標號比乙大,則甲勝;反之,則乙勝.你認為此規(guī)則是否公平?請說明理由.

(1)見解析(2)不公平,理由見解析

解析試題分析:(I)用列舉法一一列舉出甲、乙二人抽到的小球的所有情況,共16種不同情況.
(2).甲抽到的小球的標號比乙大,有共6種情況;故甲勝的概率,乙獲勝的概率為,故此游戲不公平.
試題解析:解:(I)甲、乙二人抽到的小球的所有情況為:、、、、、、、、、、、、,共16種不同情況.         6分
(2)甲抽到的小球的標號比乙大,有、、、、,共6種情況, 8分
故甲勝的概率,乙獲勝的概率為.            11分
因為,所以此游戲不公平.          12分.
考點:古典概型及其概率計算公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

A高校自主招生設置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學學生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、、p2.
(1)求學生甲不能通過A高校自主招生考試的概率;
(2)設X為學生甲在三道程序中獲優(yōu)的次數(shù),求X的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學為豐富教工生活,國慶節(jié)舉辦教工趣味投籃比賽,有、兩個定點投籃位置,在點投中一球得2分,在點投中一球得3分.其規(guī)則是:按先的順序投
籃.教師甲在點投中的概率分別是,且在、兩點投中與否相互獨立.
(1)若教師甲投籃三次,試求他投籃得分X的分布列和數(shù)學期望;
(2)若教師乙與甲在A、B點投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位從一所學校招收某類特殊人才.對位已經(jīng)選拔入圍的學生進行運動協(xié)調能力和邏輯思維能力的測試,其測試結果如下表:

例如,表中運動協(xié)調能力良好且邏輯思維能力一般的學生有人.由于部分數(shù)據(jù)丟失,只知道從這位參加測試的學生中隨機抽取一位,抽到運動協(xié)調能力或邏輯思維能力優(yōu)秀的學生的概率為
(1)求,的值;
(2)從參加測試的位學生中任意抽取位,求其中至少有一位運動協(xié)調能力或邏輯思維能力優(yōu)秀的學生的概率;
(3)從參加測試的位學生中任意抽取位,設運動協(xié)調能力或邏輯思維能力優(yōu)秀的學生人數(shù)為,求隨機變量的分布列及其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設這支籃球隊與其他籃球隊比賽勝場的事件是獨立的,并且勝場的概率是.
(1)求這支籃球隊首次勝場前已經(jīng)負了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好勝了3場的概率;
(3)求這支籃球隊在6場比賽中勝場數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

盒子里裝有16只球,其中6只是玻璃球,另外10只是木質球.而玻璃球中有2只是紅色的,4只是藍色的;木質球中有3只是紅色的,7只是藍色的,現(xiàn)從中任取一只球,如果已知取到的是藍色的球,求這個球是玻璃球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實驗考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個人該課程考核都合格的概率(結果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)若從抽取的6所學校中隨機抽取2所學校,求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將一枚硬幣拋擲6次,求正面次數(shù)與反面次數(shù)之差ξ的概率分布列,并求出ξ的期望Eξ.

查看答案和解析>>

同步練習冊答案