((本小題滿分12分)
如圖,已知橢圓方程
,
F1、
F2分別為橢圓的左、右焦點,
A為
橢圓的一頂點,直線
AF2交橢圓于點
B.
(1)若∠
F1AB90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且
,
求橢圓的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(
本小題滿分12分)
在直角坐標(biāo)系
中,橢圓
的左、右焦點分別為
. 其中
也是拋物線
的焦點,點
為
與
在第一象限的交點,且
(Ⅰ)求
的方程;
(Ⅱ)若過點
的直線
與
交于不同的兩點
.
在
之間,試求
與
面積之比的取值范圍.(
O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本小題滿分12分)
已知橢圓的中心為坐標(biāo)原點O,焦點在x軸上,橢圓短半軸長為1,動點
在直線
上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以
OM為直徑且被直線
截得的弦長為2的圓的方程;
(3)設(shè)
F是橢圓的右焦點,過點
F作
OM的垂線與以
OM為直徑的圓交于點
N,求證:線段
ON的長為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
:已知橢圓P的中心O在坐標(biāo)原點,焦點在
x坐標(biāo)軸上,且經(jīng)過點
,離心率為
(1)求橢圓P的方程:
(2)是否存在過點E(0,-4)的直線
l交橢圓P于點R,T,且滿足
.若存在,求直線
l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓
的焦距是2,則
的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
以橢畫
的右焦點F為圓心,并過橢圓的短軸端點的圓的方程為_
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若方程
表示橢圓,則實數(shù)
的取值范圍是____________________;
查看答案和解析>>