在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,若A=
π
3
,b=1,△ABC的面積為
3
2
,則a的值為
 
考點:三角形的面積公式
專題:解三角形
分析:根據(jù)三角形的面積公式,求出c的值,再由余弦定理求出a的值即可.
解答: 解:由S△ABC=
1
2
bcsinA,
得:
1
2
•1•c•sin
π
3
=
3
2
,
解得:c=2,
∴a2=b2+c2-2bccosA=1+4-2×1×2×
1
2
=3,
∴a=
3
,
故答案為:
3
點評:本題考查了解三角形問題,考查了三角形面積根式,余弦定理,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,函數(shù)f(x)=loga(x2-ax+2)在x∈[
1
2
,+∞)時的值恒為正.
(1)求a的取值范圍;
(2)若函數(shù)g(x)=loga
x-5
x+5
,判定g(x)在x∈(-∞,-5)上的單調(diào)性,并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的個數(shù)是( 。
①任取x>0,均有3x>2x
②在同一坐標(biāo)系中,y=2x與y=2-x的圖象關(guān)于y軸對稱;
③函數(shù)f(x)=log5(x2-2x)的單調(diào)遞增區(qū)間是(1,+∞);
④若方程|log2x|=2-x的兩個根分別為α,β,則αβ<1.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx,g(x)=-x2+ax-3.對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱柱至少有
 
個面,面數(shù)最少的一個棱錐有
 
個頂點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線m,n和平面α,β,有如下四個命題:
(1)若m∥α,n∥β,α∥β,則m∥n;
(2)若m∥n,n?α,n⊥β,則α⊥β;
(3)若α∩β=m,m∥n,則n∥α且n∥β;
(4)若m⊥n,α∩β=m,則n⊥α或n⊥β.
其中真命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)如圖,若直角△ABC的內(nèi)切圓與斜邊AB相切于點D,且AD=1,BD=2,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|8-3x|>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a-x2-2x(x<0)
e|x-1|(x≥0)
,且函數(shù)y=f(x)-1恰有3個不同的零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案