19.已知向量|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow$=1,則|$\overrightarrow$|min=1.

分析 運用向量數(shù)量積的定義和余弦函數(shù)的值域,結(jié)合條件,即可得到所求最小值.

解答 解:向量|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow$=1,
可得|$\overrightarrow{a}$|•|$\overrightarrow$|•cos<$\overrightarrow{a}$,$\overrightarrow$>=1,
由|cos<$\overrightarrow{a}$,$\overrightarrow$>|≤1,
可得$\frac{1}{|\overrightarrow|}$=cos<$\overrightarrow{a}$,$\overrightarrow$>≤1,
可得|$\overrightarrow$|≥1,
當$\overrightarrow{a}$,$\overrightarrow$同向時,取得最小值1.
故答案為:1.

點評 本題考查向量模的最小值的求法,注意運用向量數(shù)量積的定義和余弦函數(shù)的值域,考查運算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知雙曲線的中心在原點O,左焦點為F1,圓O過點F1,且與雙曲線的一個交點為P,若直線PF1的斜率為$\frac{1}{3}$,則雙曲線的漸近線方程為( 。
A.y=±xB.y=±$\frac{\sqrt{6}}{3}$xC.y=±$\frac{\sqrt{6}}{4}$xD.y=±$\frac{\sqrt{6}}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,點E是棱AD的中點,點F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求實數(shù)λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某人到甲、乙兩市各7個小區(qū)調(diào)查空置房情況,調(diào)查得到的小區(qū)空置房的套數(shù)繪成了如圖的莖葉圖,則調(diào)查中甲市空置房套數(shù)的中位數(shù)與乙市空置房套數(shù)的中位數(shù)之差為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.“Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$(其中i是虛數(shù)單位)是純虛數(shù).”是“θ=$\frac{π}{6}$+2kπ”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.曲線C:ρ2-2ρcosθ-8=0  曲線E:$\left\{\begin{array}{l}{x=t+2}\\{y=kt+1}\end{array}\right.$(t是參數(shù))
(1)求曲線C的普通方程,并指出它是什么曲線.
(2)當k變化時指出曲線K是什么曲線以及它恒過的定點并求曲線E截曲線C所得弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知非零向量$\overrightarrow m$,$\overrightarrow n$滿足|$\overrightarrow m|=2|\overrightarrow n|$,cos<$\overrightarrow m,\overrightarrow n>=\frac{1}{3}$,若$\overrightarrow m⊥(t\overrightarrow n+\overrightarrow m)$,則實數(shù)t的值為( 。
A.-6B.$-\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知直線a⊥平面α,則“直線b∥平面α”是“直線a⊥直線b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在四棱錐P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PB=PC=2,求點P到面ABCD的距離.

查看答案和解析>>

同步練習冊答案