【題目】(本小題滿分13分,()小問5分,()小問8.

甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立.求:()打滿3局比賽還未停止的概率;()比賽停止時(shí)已打局?jǐn)?shù)的分別列與期望E

【答案】

)分布列


2

3

4

5

6

P






(局)

【解析】

分別表示甲、乙、丙在第k局中獲勝.

)由獨(dú)立事件同時(shí)發(fā)生與互斥事件至少有一個(gè)發(fā)生的概率公式知,打滿3局比賽還未停止的概率為

的所有可能值為2,3,45,6,且

;

;

;

;

故有分布列


2

3

4

5

6

P






從而(局).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:)的左頂點(diǎn)為A,離心率為,點(diǎn)在橢圓C.

1)求橢圓C的方程;

2)若直線)與橢圓C交于E,F兩點(diǎn),直線,分別與y軸交于點(diǎn)M,N,求證:x軸上存在點(diǎn)P,使得無論非零實(shí)數(shù)k怎樣變化,以為直徑的圓都必過點(diǎn)P,并求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.若等比數(shù)列的前項(xiàng)和為,則,也成等比數(shù)列.

B.命題的極值點(diǎn),則的逆命題是真命題.

C.為真命題為真命題的充分不必要條件.

D.命題,使得的否定是:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),且與圓相交于兩點(diǎn),試問直線的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了對(duì)應(yīng)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)延遲退休年齡政策,為了了解人們對(duì)延遲退休年齡政策的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在1565的人群中隨機(jī)調(diào)查50人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有90%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)延遲退休年齡政策的支持度有差異:

2)若從年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,求選中的2人中恰有1人支持延遲退休的概率.

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)德育處為了解全校學(xué)生的上網(wǎng)情況,在全校隨機(jī)抽取了40名學(xué)生(其中男、女生人數(shù)各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,得到如圖所示的頻率分布直方圖.

1)寫出女生組頻率分布直方圖中的值;

2)求抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15的學(xué)生人數(shù);

3)在抽取的40名學(xué)生中從月上網(wǎng)次數(shù)不少于20的學(xué)生中隨機(jī)抽取3人,并用表示隨機(jī)抽取的3人中男生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱ABCDA1B1C1D1中,∠BAD=∠BCD=90°,∠ADC=60°且AD=CD,BB1⊥平面ABCD,BB1=2AB=2.

1)證明:ACB1D.

2)求BC1與平面B1C1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷售量(單位:萬件)與月銷售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷售量和月銷售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:

月銷售單價(jià)(元/件)

月銷售量(萬件)

1)若用線性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說明理由;

2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為,請(qǐng)用說明哪個(gè)回歸模型的擬合效果更好;

3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當(dāng)月銷售單價(jià)為何值時(shí),商品的月銷售額預(yù)報(bào)值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),過點(diǎn)軸的垂線交函數(shù)圖象于點(diǎn),以為切點(diǎn)作函數(shù)圖象的切線交軸于點(diǎn),再過軸的垂線交函數(shù)圖象于點(diǎn),,以此類推得點(diǎn),記的橫坐標(biāo)為,

1)證明數(shù)列為等比數(shù)列并求出通項(xiàng)公式;

2)設(shè)直線與函數(shù)的圖象相交于點(diǎn),記(其中為坐標(biāo)原點(diǎn)),求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案