2.函數(shù)y=tanx(-$\frac{π}{4}$≤x≤$\frac{π}{4}$且x≠0)的值域是( 。
A.[-1,1]B.[-1,0)∪(0,1]C.(-∞,1]D.[-1,+∞)

分析 由題意利用正切函數(shù)的單調(diào)性,求得函數(shù)的值域.

解答 解:由于函數(shù)y=tanx(-$\frac{π}{4}$≤x≤$\frac{π}{4}$且x≠0)在[-$\frac{π}{4}$,0)∪(0,$\frac{π}{4}$]上單調(diào)遞增,
當(dāng)x=-$\frac{π}{4}$時(shí),y=-1;當(dāng)x=0時(shí),y=0;當(dāng)x=$\frac{π}{4}$時(shí),y=1,
故該函數(shù)的值域?yàn)閇-1,0)∪(0,1],
故選:B.

點(diǎn)評(píng) 本題主要考查正切函數(shù)的單調(diào)性以及值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某比賽現(xiàn)場(chǎng)放著甲、乙、丙三個(gè)空盒,主持人從一副不含大小王的52張撲克牌中,每次任取兩張牌,將一張放入甲盒,若這張牌是紅色的(紅桃或方片),就將另一張放入乙盒;若這張牌是黑色的(黑桃或梅花),就將另一張放入丙盒;重復(fù)上述過程,直到所有撲克牌都放入三個(gè)盒子內(nèi),給出下列結(jié)論:
①乙盒中黑牌不多于丙盒中黑牌 
②乙盒中紅牌與丙盒中黑牌一樣多
③乙盒中紅牌不多于丙盒中紅牌 
④乙盒中黑牌與丙盒中紅牌一樣多
其中正確結(jié)論的序號(hào)為②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)的導(dǎo)函數(shù)f'(x),且滿足f(x)=2xf'(1)+lnx,則f′(1)=( 。
A.-1B.-eC.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓E的方程為(x-2)2+y2=1,直線1的方程為2x-y=0,點(diǎn)P在直線1上.
(1)若點(diǎn)P的坐標(biāo)為(1,2).
①過點(diǎn)P作圓E的切線,求切線1的方程;
②過點(diǎn)P作圓E的割線交圓E于C、D兩點(diǎn).當(dāng)|CD|=$\sqrt{2}$時(shí),求直線CD的方程;
(2)若過點(diǎn)P作圓E的切線PA、PB,切點(diǎn)為A、B,.求證:經(jīng)過P、A、E、B四點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{6}}{3}$,過右焦點(diǎn)F(c,0)且垂直于x軸的直線被橢圓E截得的弦長(zhǎng)為$\frac{4}{3}$$\sqrt{3}$,設(shè)直線y=t(t>0)與橢圓E交于不同的兩點(diǎn)A、B.以線段AB為直徑作圓M.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若圓M與x軸相切,求圓M的方程;
(3)過點(diǎn)P($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)作圓M的弦,求最短弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某班50名學(xué)生右眼視力的檢查結(jié)果如表所示:
視力0.10.20.30.40.50.60.70.81.01.21.5
人數(shù)113434468106
則該班學(xué)生右眼視力的眾數(shù)為1.2,中位數(shù)為0.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個(gè)樣本a,99,b,101,c中5個(gè)數(shù)恰好構(gòu)成等差數(shù)列,則這個(gè)樣本的標(biāo)準(zhǔn)差為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等差數(shù)列{an}中,已知d=$\frac{1}{2}$,a1=-3,Sn=$\frac{15}{2}$,則an=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,已知P是?ABCD所在平面外一點(diǎn),M,N分別是AB,PC的中點(diǎn),平面PAD∩平面PBC=l.
求證:(1)l∥BC.
(2)MN∥平面PAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案