已知數(shù)列滿足,且,
(1)當(dāng)時,求出數(shù)列的所有項(xiàng);
(2)當(dāng)時,設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項(xiàng)和為,證明:.
(1),,;(2)詳見解析;(3)詳見解析.
解析試題分析:(1)先將代入找出遞推公式,逐一求出數(shù)列的每一項(xiàng);(2)通過式子的變形找出的形式,利用放縮法比較大;(3)放縮法求出解析式,再利用等比數(shù)列得求和公式求和.
試題解析: (1)證明:∵,,
∴,,
由于當(dāng)時,使遞推式右邊的分母為零。
∴數(shù)列只有三項(xiàng):. (3分)
(2),易知:,
又,
∴ (5分)
由
,
即 (8分)
(3)由(2)知: ,
∴
∵,
∴ (11分)
,
∴ (13分)
考點(diǎn):1.由遞推公式求數(shù)列的每一項(xiàng);2.放縮法比較大小;3.等比數(shù)列求和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項(xiàng)和為Tn.求使Tn>bn的最小正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為且,數(shù)列滿足且.
(1)求的通項(xiàng)公式;
(2)求證:數(shù)列為等比數(shù)列;
(3)求前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足:
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足 ,求的通項(xiàng)公式;
(3)求數(shù)列前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),,和數(shù)列1,,,()提出一個正確的命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比.
(1)求與;(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,是數(shù)列前項(xiàng)和,,當(dāng)
(1)證明為等差數(shù)列;;
(2)設(shè)求數(shù)列的前項(xiàng)和;
(3)是否存在自然數(shù)m,使得對任意自然數(shù),都有成立?若存在,
求出m 的最大值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com