15.在推理“因?yàn)閥=sinx在[0,$\frac{π}{2}$]上是增函數(shù),所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,大前提是y=sinx在[0,$\frac{π}{2}$]上是增函數(shù);小前提是$\frac{3π}{7}$>$\frac{2π}{5}$且 $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$];結(jié)論是sin$\frac{3π}{7}$>sin$\frac{2π}{5}$.

分析 由題意,根據(jù)三段論的形式“大前提,小前提,結(jié)論”直接寫(xiě)出答案即可

解答 解:用三段論的形式寫(xiě)出“因?yàn)閥=sinx在[0,$\frac{π}{2}$]上是增函數(shù),所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,”的演繹推理是:
大前提    y=sinx在[0,$\frac{π}{2}$]上是增函數(shù)
小前提    $\frac{3π}{7}$>$\frac{2π}{5}$ 且  $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$]
結(jié)論      sin$\frac{3π}{7}$>sin$\frac{2π}{5}$
故答案為:y=sinx在[0,$\frac{π}{2}$]上是增函數(shù),$\frac{3π}{7}$>$\frac{2π}{5}$ 且  $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$],sin$\frac{3π}{7}$>sin$\frac{2π}{5}$

點(diǎn)評(píng) 本題考查演繹推理--三段論,解題的關(guān)鍵是理解三段論的形式,本題是基礎(chǔ)概念考查題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)M是△ABC邊BC上的任意一點(diǎn),$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.古代數(shù)學(xué)家楊輝在沈括的隙積數(shù)的基礎(chǔ)上想到:若由大小相等的圓球剁成類似于正四棱臺(tái)的方垛,上底由a×a個(gè)球組成,楊輝給出求方垛中圓球總數(shù)的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根據(jù)以上材料,我們可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},則A∩B=(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求證:平面A1BC⊥平面ABC1
(2)若直線AA1與底面ABC所成的角為60°,求直線AA1與平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤6}\\{x≥1}\end{array}\right.$,則z=2|x-2|+|y|的最小值是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在R上的函數(shù)f(x)滿足:f(2)=1,且對(duì)于任意的x∈R,都有f′(x)<$\frac{1}{3}$,則不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集為{x丨0<x<4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中點(diǎn),M是AO上一點(diǎn),且$\overrightarrow{AO}$=3$\overrightarrow{MO}$,則$\overrightarrow{MB}$$•\overrightarrow{MC}$的值是( 。
A.-$\frac{5}{3}$B.-$\frac{7}{6}$C.-$\frac{7}{3}$D.-$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{4-|{ax-2}|}({a≠0})$.
(1)求函數(shù)f(x)的定義域;
(2)若當(dāng)x∈[0,1]時(shí),不等式f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案