18.△ABC中,D為AB的中點(diǎn),點(diǎn)F在線段CD(不含端點(diǎn))上,且滿足$\overrightarrow{AF}=x\overrightarrow{AB}+y\overrightarrow{AC}$(x,y∈R),則$\frac{1}{x}+\frac{2}{y}$的最小值為( 。
A.$3+2\sqrt{2}$B.$2+2\sqrt{2}$C.6D.8

分析 根據(jù)C,F(xiàn),D三點(diǎn)共線可得x,y的關(guān)系,再利用基本不等式解出.

解答 解:$\overrightarrow{AF}=x\overrightarrow{AB}+y\overrightarrow{AC}=2x\overrightarrow{AD}+y\overrightarrow{AC}$,
因?yàn)镃,F(xiàn),D三點(diǎn)共線,
所以2x+y=1且x>0,y>0,
則$\frac{1}{x}+\frac{2}{y}=({\frac{1}{x}+\frac{2}{y}})(2x+y)=4+\frac{y}{x}+\frac{4x}{y}≥4+2\sqrt{\frac{y}{x}\;•\;\frac{4x}{y}}=8$,
當(dāng)且僅當(dāng)$\frac{y}{x}=\frac{4x}{y}$,即$x=\frac{1}{4}$,$y=\frac{1}{2}$時(shí),上式取等號(hào),
故$\frac{1}{x}+\frac{2}{y}$有最小值8,
故選D.

點(diǎn)評(píng) 本題考查了向量共線定理和基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,G點(diǎn)為△ABC的重心,a,b,c分別為角A,B,C的對(duì)邊,若b2+c2+bc=a2,且S△ABC=2$\sqrt{3}$,則|AG|的最小值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.乓球臺(tái)面被網(wǎng)分隔成甲、乙兩部分,如圖,甲上有兩個(gè)不相交的區(qū)域A、B,乙被劃分為兩個(gè)不相交的區(qū)域C、D.某次測(cè)試要求隊(duì)員接到落點(diǎn)在甲上的來球后向乙回球.規(guī)定:回球一次,落點(diǎn)在C上記3分,在D上記1分,其它情況記0分.對(duì)落點(diǎn)在A上的來球,隊(duì)員小明回球的落點(diǎn)在C上的概率為$\frac{1}{2}$,在D上的概率為$\frac{1}{3}$;對(duì)落點(diǎn)在B上的來球,小明回球的落點(diǎn)在C上的概率為$\frac{1}{5}$,在D上的概率為$\frac{3}{5}$.假設(shè)共有兩次來球且落在A、B上各一次,小明的兩次回球互不影響.求:
(1)小明兩次回球的落點(diǎn)中恰有一次的落點(diǎn)在乙上的概率;
(2)兩次回球結(jié)束后,小明得分之和ξ的分布列與均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)P為直線y=$\frac{3}{4}$x上任一點(diǎn),F(xiàn)1(-5,0),F(xiàn)2(5,0),則||PF1|-|PF2||的取值范圍為[0,8.5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和${S_n}={2^{n+2}}-4{\;}^{\;}({n∈{N^*}})$,數(shù)列{bn}滿足${b_{n+1}}={b_n}+\frac{1}{2}$,b1=1
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=an•bn,Tn是數(shù)列{cn}的前n項(xiàng)和,若存在正實(shí)數(shù)k,使不等式$k({n^2}-9n+36){T_n}>6{n^2}{a_n}$對(duì)于一切的n∈N*恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC中,$tanA=\frac{3}{4}$,則cos2A等于(  )
A.$\frac{18}{25}$B.$-\frac{18}{25}$C.$-\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.雙曲線5x2-4y2+60=0的焦點(diǎn)坐標(biāo)為$(0,±3\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{a}$-$\frac{1}{x}$ (a>0,x>0).
(1)用定義法證明:f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范圍;
(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知P1(2,-1),P2(0,5),且點(diǎn)P在線段P1P2的延長(zhǎng)線上,且$|\overrightarrow{{P_1}{P_2}}|=2|\overrightarrow{P{P_2}}|$,則點(diǎn)P的坐標(biāo)是(-1,8).

查看答案和解析>>

同步練習(xí)冊(cè)答案