已知
是等差數(shù)列,前n項和是
,且
,
,
(1)求數(shù)列
的通項公式;
(2)令
=
·2
n,求數(shù)列
的前n項和
(1)
,(2)
試題分析:(1)等差數(shù)列的求解方法為待定系數(shù)法,利用已知兩個條件,列出關(guān)于首項及公差的方程組
,解出
,從而可得數(shù)列
的通項公式
;(2)數(shù)列求和,要先分析通項特征,本題是等差乘等比型,因此應(yīng)用錯位相減法求和. 設(shè)
,則
,錯位相減得
,再利用等比數(shù)列求和公式化簡得
試題解析:
解:(1)
解得
4分
(2)
①
② 6分
① ②
8分
所以:
12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在等差數(shù)列
中,
,其前n項和為
,等比數(shù)列
的各項均為正數(shù),
,公比為q,且
,
.
(1)求
與
;
(2)設(shè)數(shù)列
滿足
,求
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列{an}滿足anan+1an+2·an+3=24,且a1=1,a2=2,a3=3,則a1+a2+a3+…+a2 013=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{an},如果數(shù)列{bn}滿足b1=a1,bn=an+an-1,n≥2,n∈N*,則稱數(shù)列{bn}是數(shù)列{an}的“生成數(shù)列”.
(1)若數(shù)列{an}的通項為an=n,寫出數(shù)列{an}的“生成數(shù)列”{bn}的通項公式;
(2)若數(shù)列{cn}的通項為cn=2n+b(其中b是常數(shù)),試問數(shù)列{cn}的“生成數(shù)列”{qn}是否是等差數(shù)列,請說明理由;
(3)已知數(shù)列{dn}的通項為dn=2n+n,求數(shù)列{dn}的“生成數(shù)列”{pn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知在等比數(shù)列{
an}中,有
a3a11=4
a7,數(shù)列{
bn}是等差數(shù)列,且
a7=
b7,則
b5+
b9=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列{an}的通項公式是an=-n2+12n-32,其前n項和是Sn,對任意的m,n∈N*且m<n,則Sn-Sm的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知等差數(shù)列{an}的前n項和為Sn,若(a2-1)3+2 012·(a2-1)=1,(a2 011-1)3+2 012(a2 011-1)=-1,則下列四個命題中真命題的序號為________.
①S2 011=2 011;②S2 012=2 012;③a2 011<a2;④S2 011<S2.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)等差數(shù)列{an}的前n項和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則m等于________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)等差數(shù)列{
an}的前
n項和為
Sn,
Sm-1=-2,
Sm=0,
Sm+1=3,則
m等于( ).
查看答案和解析>>