15.先把函數(shù)$y=2sin({2x+\frac{π}{6}})$的圖象上的所有點(diǎn)向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再把所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到的圖象對(duì)應(yīng)的函數(shù)解析式是y=2cos4x.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.

解答 解:把函數(shù)$y=2sin({2x+\frac{π}{6}})$的圖象上的所有點(diǎn)向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,可得y=2sin(2x+$\frac{π}{3}$+$\frac{π}{6}$)=2cos2x的圖象;
再把所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到的圖象對(duì)應(yīng)的函數(shù)為y=2cos4x,
故答案為:y=2cos4x.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線(xiàn)l過(guò)點(diǎn)P(1,2),且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),則當(dāng)△AOB的面積取得最小值時(shí),直線(xiàn)l的方程為( 。
A.2x+y-4=0B.x-2y+3=0C.x+y-3=0D.x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.等差數(shù)列{an}中,已知a4=-4,a8=4,則a12=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2x3-ax2+8.
(1)若f(x)<0對(duì)?x∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)g(x)=f(x)+4ax2-12a2x+3a3-8在區(qū)間(0,1)上存在極小值,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.不等式lnx+x-1<0的解集為( 。
A.$(0,\frac{e}{4})$B.$(0,\frac{e}{2})$C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lg(x2+ax+b)的定義域?yàn)锳,$g(x)=\sqrt{k{x^2}+4x+k+3}$的定義域?yàn)锽.
(1)若B=R,求k的取值范圍;
(2)若(∁RA)∩B=B,(∁RA)∪B={x|-2≤x≤3},求實(shí)數(shù)a,b的值及實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)$f(x)=tanx+\frac{1}{tanx}$,若f(α)=5,則f(-α)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知方程$\frac{x^2}{k+1}-\frac{y^2}{k-1}=1$表示雙曲線(xiàn),則k的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為(  )
A.$\frac{4}{3}π$B.$\frac{{32\sqrt{3}}}{27}π$C.$\frac{{28\sqrt{3}}}{27}π$D.$\frac{{28\sqrt{21}}}{27}π$

查看答案和解析>>

同步練習(xí)冊(cè)答案