4.已知方程$\frac{x^2}{k+1}-\frac{y^2}{k-1}=1$表示雙曲線,則k的取值范圍是(-∞,-1)∪(1,+∞).

分析 根據(jù)題意,由雙曲線的方程可得(k+1)(k-1)>0,解可得k的取值范圍,即可得答案.

解答 解:根據(jù)題意,方程$\frac{x^2}{k+1}-\frac{y^2}{k-1}=1$表示雙曲線,
則有(k+1)(k-1)>0,
解可得:k<-1或k>1,
則k的取值范圍是(-∞,-1)∪(1,+∞);
故答案為:(-∞,-1)∪(1,+∞).

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程,關(guān)鍵是掌握雙曲線的方程的形式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列結(jié)論:
①扇形的圓心角為120°,半徑為2,則扇形的弧長是$\frac{4π}{3}$;
②某小禮堂有25排座位,每排20個(gè),一次心理學(xué)講座,禮堂中坐滿了學(xué)生,會(huì)后為了了解有關(guān)情況,留下座位號(hào)是15的所有25名學(xué)生進(jìn)行測(cè)試,這里運(yùn)用的是系統(tǒng)抽樣方法;
③一個(gè)人打靶時(shí)連續(xù)射擊兩次,則事件“至少有一次中靶”與事件“兩次都不中靶”互為對(duì)立事件;
④若0<x<$\frac{π}{2}$,則tanx>x>sinx;
⑤若數(shù)據(jù)x1,x2,…,xn的方差為8,數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的方差為16.
其中正確結(jié)論的序號(hào)為①②③④.  (把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.先把函數(shù)$y=2sin({2x+\frac{π}{6}})$的圖象上的所有點(diǎn)向左平移$\frac{π}{6}$個(gè)單位長度,再把所有點(diǎn)的橫坐標(biāo)伸長到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到的圖象對(duì)應(yīng)的函數(shù)解析式是y=2cos4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將除顏色外完全相同的一個(gè)白球、一個(gè)黃球、兩個(gè)紅球分給三個(gè)小朋友,且每個(gè)小朋友至少分得一個(gè)球的分法有21(種).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法錯(cuò)誤的是(  )
A.命題p:“?x∈R,使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0”
B.“x>1”是“|x|>1”的充分不必要條件
C.若p且q為假命題,則p、q均為假命題
D.命題:“已知f(x)是R上的增函數(shù),若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)”的逆否命題為“已知f(x)是R上的增函數(shù),若f(a)+f(b)<f(-a)+f(-b),則a+b<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,$A=\frac{π}{3}$、$BC=3,AB=\sqrt{6}$,則角C等于( 。
A.$\frac{π}{4}或\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={x|x2-x-6<0},B={x|2x≥1},則A∩B=( 。
A.{x|1≤x<3}B.{x|0≤x<3}C.{x|1≤x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=2cosx-3sinx的導(dǎo)數(shù)為f'(x),則f'(x)=( 。
A.f'(x)=-2sinx-3cosxB.f'(x)=-2cosx+3sinx
C.f'(x)=-2sinx+3cosxD.f'(x)=2sinx-3cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論不正確的是( 。
①.$\frac{1}{{{2^{10}}}}+\frac{1}{{{2^{10}}+1}}+\frac{1}{{{2^{10}}+2}}+…+\frac{1}{{{2^{11}}-1}}>1$
②若|a|<1,則|a+b|-|a-b|>2
③lg9•lg11<1
④若x>0,y>0,則$\frac{x+y}{1+x+y}<\frac{x}{1+x}+\frac{y}{1+y}$.
A.①②B.①②③C.①②④D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案