分析 (Ⅰ)設(shè)G是線段DA與EB延長線的交點(diǎn).由已知條件推導(dǎo)出OB,OC,的關(guān)系,然后證明BC∥EF.
(Ⅱ)求出棱錐的底面面積,求出四棱錐F-OBED的高,然后求解幾何體的體積.
解答 (Ⅰ)證明:設(shè)G是線段DA與EB延長線的交點(diǎn).
由于△OAB與△ODE都是正三角形,
∴OB$\stackrel{∥}{=}$$\frac{1}{2}$DE,OG=OD=2,
同理,設(shè)G'是線段DA與FC延長線的交點(diǎn),有OG'=OD=2.
又由于G和G'都在線段DA的延長線上,
∴G與G'重合.在△GED和△GFD中,
由OB$\stackrel{∥}{=}$$\frac{1}{2}$DE和OC$\stackrel{∥}{=}$$\frac{1}{2}$DF,
知B和C分別是GE和GF的中點(diǎn).
∴BC是△GEF的中位線,
故BC∥EF.
(Ⅱ)由OB=1,OE=2.∠EOB=60°,可知:${S}_{△EOB}=\frac{\sqrt{3}}{2}$,而△OED是邊長為2的正三角形,
所以,${S}_{△OED}=\sqrt{3}$所以${S}_{△BED}=\frac{3\sqrt{3}}{2}$,過點(diǎn)F作FQ⊥AD,交AD于Q,
由平面ABED⊥平面ACFD可知FQ是四棱錐F-OBED的高,且FQ=$\sqrt{3}$.
所以${V}_{F-OBED}=\frac{1}{3}FQ•{S}_{OBED}$=$\frac{3}{2}$.
點(diǎn)評 本題考查直線與平面平行的性質(zhì)定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{3}{2}$) | B. | [-$\frac{1}{2}$,$\frac{3}{2}$] | C. | (-$\frac{3}{2}$,$\frac{1}{2}$) | D. | [-$\frac{3}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{17}$ | B. | $\frac{9}{19}$ | C. | $\frac{10}{21}$ | D. | $\frac{11}{23}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z | B. | x=km,k∈Z | C. | x=km+$\frac{π}{2}$,k∈Z | D. | x=$\frac{kπ}{2}$,k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 9 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com