【題目】為了解高三學(xué)生的“理科綜合”成績是否與性別有關(guān),某校課外學(xué)習(xí)興趣小組在本地區(qū)高三年級理科班中隨機(jī)抽取男、女學(xué)生各100名,然后對這200名學(xué)生在一次聯(lián)合模擬考試中的“理科綜合”成績進(jìn)行統(tǒng)計規(guī)定:分?jǐn)?shù)不小于240分為“優(yōu)秀”小于240分為“非優(yōu)秀”.
(1)根據(jù)題意,填寫下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%以上的把握認(rèn)為“理科綜合”成績是否優(yōu)秀與性別有關(guān).
性別 | 優(yōu)秀 | 非優(yōu)秀 | 總計 |
男生 | 35 | ||
女生 | 75 | ||
總計 |
(2)用分層抽樣的方法從成績優(yōu)秀的學(xué)生中隨機(jī)抽取12名學(xué)生,然后再從這12名學(xué)生中抽取3名參加某高校舉辦的自主招生考試,設(shè)抽到的3名學(xué)生中女生的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析,沒有以上的把握認(rèn)為“理科綜合”成績是否優(yōu)秀與性別有關(guān);
(2)見解析,
【解析】
(1)根據(jù)題意填寫列聯(lián)表,計算觀測值,對照臨界值得出結(jié)論;
(2)用分層抽樣法求出抽取的男、女生人數(shù),知X的可能取值,
計算對應(yīng)的概率值,寫出X的分布列,求出數(shù)學(xué)期望值.
(1)根據(jù)題意,填寫2×2列聯(lián)表如下;
性別 | 優(yōu)秀 | 非優(yōu)秀 | 總計 |
男生 | 35 | 65 | 100 |
女生 | 25 | 75 | 100 |
總計 | 60 | 140 | 200 |
計算,且,
所以沒有以上的把握認(rèn)為“理科綜合”成績是否優(yōu)秀與性別有關(guān);
(2)用分層抽樣的方法從成績優(yōu)秀的學(xué)生中隨機(jī)抽取12名學(xué)生,
男生有7人,女生有5人,從這12名學(xué)生中抽取3人,
抽到的3人中女生的人數(shù)為X,則X的可能取值為0,1,2,3;
計算,
,
,
,
所以X的分布列為:
0 | 1 | 2 | 3 | |
數(shù)學(xué)期望為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x=﹣1是函數(shù)f(x)x3(a2+a﹣3)x2+(2a+2)x的極大值點(diǎn),則實數(shù)a=( )
A.0B.0或﹣3C.0或3D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱內(nèi)接于一個半徑為的球,四邊形與均為正方形,分別是,的中點(diǎn),,則異面直線與所成角的余弦值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B是拋物線C:y2=4x上兩點(diǎn),線段AB的垂直平分線與x軸有唯一的交點(diǎn)P(x0,0).
(1)求證:x0>2;
(2)若直線AB過拋物線C的焦點(diǎn)F,且|AB|=10,求|PF|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線Γ上一點(diǎn),且在第一象限,滿足(2,2)
(1)求拋物線Γ的方程;
(2)已知經(jīng)過點(diǎn)A(3,﹣2)的直線交拋物線Γ于M,N兩點(diǎn),經(jīng)過定點(diǎn)B(3,﹣6)和M的直線與拋物線Γ交于另一點(diǎn)L,問直線NL是否恒過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn),否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是等邊三角形,,點(diǎn)是 的中點(diǎn),連接.
(1)證明:平面平面;
(2)若,且二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實數(shù)a,b,c,d滿足︱b+a2-3lna︱+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個小時抽取一件產(chǎn)品并對其某個質(zhì)量指標(biāo)進(jìn)行檢測,一共抽取了件產(chǎn)品,并得到如下統(tǒng)計表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.
質(zhì)量指標(biāo) | |||
頻數(shù) | |||
一年內(nèi)所需維護(hù)次數(shù) |
(1)以每個區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));
(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;
(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項服務(wù):若消費(fèi)者在購買該廠產(chǎn)品時每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購買每件產(chǎn)品時是否值得購買這項維護(hù)服務(wù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸為,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),若點(diǎn)為橢圓上一動點(diǎn)(不同于點(diǎn)、)直線.設(shè)直線的方程為,直線與直線、、分別交于、、三點(diǎn),試問:是否存在實數(shù),使得恒成立?若存在,請求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com