直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.
(Ⅰ) 求實(shí)數(shù)b的值,及點(diǎn)A的坐標(biāo);
(Ⅱ) 求過(guò)點(diǎn)B(0,-1)的拋物線C的切線方程.
考點(diǎn):拋物線的應(yīng)用
專(zhuān)題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)直線l:y=x+b與拋物線C:x2=4y聯(lián)立,消去y,利用直線l與拋物線C相切,可得△=(-4)2-4×(-4b)=0,即可求實(shí)數(shù)b的值,及點(diǎn)A的坐標(biāo);
(Ⅱ)設(shè)過(guò)點(diǎn)B(0,-1)的拋物線C的切線方程為y=kx-1,與拋物線C:x2=4y聯(lián)立,消去y,利用直線l與拋物線C相切,可得△=0.即可求出過(guò)點(diǎn)B(0,-1)的拋物線C的切線方程.
解答: 解:(Ⅰ)直線l:y=x+b與拋物線C:x2=4y聯(lián)立,消去y,可得x2-4x-4b=0. (*)
因?yàn)橹本l與拋物線C相切,所以△=(-4)2-4×(-4b)=0,解得b=-1;
代入方程(*)即為x2-4x+4=0,解得x=2,y=1,故點(diǎn)A(2,1).
(Ⅱ)設(shè)過(guò)點(diǎn)B(0,-1)的拋物線C的切線方程為y=kx-1.
與拋物線C:x2=4y聯(lián)立,消去y,可得x2-4kx+4=0,
因?yàn)橹本l與拋物線C相切,所以△=(-4k)2-4×4=0,解得k=±1,
所以過(guò)點(diǎn)B(0,-1)的拋物線C的切線方程為y=±x-1.
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查學(xué)生的計(jì)算能力,正確聯(lián)立直線與拋物線方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|2x2-x-3=0},B={x|ax+2=0},若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某網(wǎng)絡(luò)營(yíng)銷(xiāo)部門(mén)隨機(jī)抽查了某市200名網(wǎng)友在2013年11月11日的網(wǎng)購(gòu)金額,所得數(shù)據(jù)如下表:
網(wǎng)購(gòu)金額(單位:千元) 人數(shù) 頻率
(0,1] 16 0.08
(1,2] 24 0.12
(2,3] x p
(3,4] y q
(4,5] 16 0.08
(5,6] 14 0.07
合計(jì) 200 1.00
已知網(wǎng)購(gòu)金額不超過(guò)3千元與超過(guò)3千元的人數(shù)比恰為3:2
(1)試確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖(如圖).
(2)該營(yíng)銷(xiāo)部門(mén)為了了解該市網(wǎng)友的購(gòu)物體驗(yàn),從這200網(wǎng)友中,用分層抽樣的方法從網(wǎng)購(gòu)金額在(1,2]和(4,5]的兩個(gè)群體中確定5人中進(jìn)行問(wèn)卷調(diào)查,若需從這5人中隨機(jī)選取2人繼續(xù)訪談,則此2人來(lái)自不同群體的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=(-x2+ax-3)ex(a為實(shí)數(shù)).
(Ⅰ)當(dāng)a=5時(shí),求函數(shù)y=g(x)在x=1處的切線方程;
(Ⅱ)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(Ⅲ)若存在兩不等實(shí)根x1,x2∈[
1
e
,e],使方程g(x)=2exf(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞)

(1)當(dāng)a=4時(shí),求函數(shù)f(x)的最小值;
(2)解關(guān)于x的不等式f(x)>a+3;
(3)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx,g(x)=
a
x
(a>0)

(1)當(dāng)a=2時(shí),求h(x)=f(x)+g(x)的最小值;
(2)若h(x)=f(x)+g(x),在(0,+∞)上有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閇0,1].
(1)求g(x)的解析式;
(2)求g(x)的值域;
(3)是否存在實(shí)數(shù)t,若對(duì)任意的x1∈[0,1],都存在x2∈[t,t+1]使得g(x1)=f(x2)-3成立,若存在求出t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2,g(x)=x-1.
(1)若不等式f(x)>bg(x)對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍;
(2)設(shè)F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=πsin
1
4
x
,如果存在實(shí)數(shù)x1,x2,使x∈R時(shí),f(x1)≤f(x)≤f(x2)恒成立,則|x1-x2|的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案