12.在平面直角坐標(biāo)系中,A(0,-1),B(m,1),C($\sqrt{3}$,0),若向量$\overrightarrow{AB}$與$\overrightarrow{AC}$夾角為120°,則實(shí)數(shù)m的值為( 。
A.0或2$\sqrt{3}$B.2$\sqrt{3}$C.0或-2$\sqrt{3}$D.-2$\sqrt{3}$

分析 由已知點(diǎn)的坐標(biāo)求出向量$\overrightarrow{AB}、\overrightarrow{AC}$的坐標(biāo),再由數(shù)量積求夾角公式列式即可求得m值.

解答 解:∵A(0,-1),B(m,1),C($\sqrt{3}$,0),
∴$\overrightarrow{AB}=(m,2),\overrightarrow{AC}=(\sqrt{3},1)$,
∴$\overrightarrow{AB}•\overrightarrow{AC}=\sqrt{3}m+2$,$|\overrightarrow{AB}|=\sqrt{{m}^{2}+4},|\overrightarrow{AC}|=2$,
∴cos120$°=-\frac{1}{2}$=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=\frac{\sqrt{3}m+2}{2\sqrt{{m}^{2}+4}}$,解得m=0(舍)或$m=-2\sqrt{3}$.
故選:D.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了數(shù)量積求斜率的夾角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知△ABC為銳角三角形,若角α終邊上一點(diǎn)P(cosB-sinA,sinB-cosA)),求$\frac{|cosα|}{sin(\frac{3}{2}π+α)}$+$\frac{sin(π-α)}{|sinα|}$+$\frac{|tanα|}{tanα}$的值;
(2)已知sinxcosx=$\frac{168}{625}$,x∈($\frac{π}{4},\frac{π}{2}$),求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)數(shù)列an的前n項(xiàng)之和Sn=n2,bn=(-1)n+1$\frac{4n}{{{a_n}{a_{n+1}}}}$,則bn的前20項(xiàng)之和( 。
A.$\frac{41}{42}$B.$\frac{1}{42}$C.$\frac{40}{41}$D.$\frac{42}{41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(I)求a的值;
(II)若不等式ax2+bx+1≥0在R上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C的兩焦點(diǎn)的距離之和為4,
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)(1,0)作直線l與橢圓C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在這樣的直線l,使四邊形OASB的對(duì)角線長(zhǎng)相等?若存在,求出l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,g(x)=f(x-1)+1,an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),n∈N*,數(shù)列{an}的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}是等差數(shù)列,且bn=$\frac{2{S}_{n}-n}{n+c}$,求非零常數(shù)c;
(3)設(shè)cn=$\frac{1}{{a}_{n}{a}_{n+1}}$,若數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn$>\frac{k}{57}$對(duì)一切n∈N*都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)α,β,γ是三個(gè)不同的平面,a,b是兩個(gè)不同的直線,下列四個(gè)命題中正確的是(  )
A.若a∥α,b∥α,則 a∥bB.若a∥α,a∥β,則 α∥β
C.若a⊥α,b⊥α,則 a∥bD.若α⊥β,α⊥γ,則 β∥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2+2ax+3.
(Ⅰ)若f(x)在(-∞,$\frac{1}{2}$]是減函數(shù),在[$\frac{1}{2}$,+∞)是增函數(shù),求函數(shù)f(x)在區(qū)間[-1,5]的最大值和最小值.
(Ⅱ)求實(shí)數(shù)a的取值范圍,使f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“0<a<1”是“函數(shù)f(x)=|x|-ax在(0,+∞)上有零點(diǎn)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案