分析 由題意作BE垂直BP,使BE=BP(點E和P在BC兩側),連接PE,CE,作CH垂直BE的延長線于H,則∠CEH=180°-∠BEC=45°.進一步由勾股定理求得答案即可.
解答 解:作BE垂直BP,使BE=BP(點E和P在BC兩側),連接PE,CE.
則:∠BPE=∠BEP=45°;PE2=BE2+BP2=4+4=8;
∵∠EBP=∠CBA=90°.
∴∠EBC=∠PBA;又BE=BP,BC=BA.
∴△EBC≌△PBA(SAS),CE=AP=1.
∵PE2+CE2=8+1=9; PC2=32=9.
∴PE2+CE2=PC2,則∠PEC=90°,∠BEC=∠BEP+∠PEC=135°;
作CH垂直BE的延長線于H,則∠CEH=180°-∠BEC=45°.
∴CH=EH=$\frac{\sqrt{2}}{2}$,BH=BE+EH=2+$\frac{\sqrt{2}}{2}$.
故S正方形ABCD=BC2=BH2+CH2=(2+$\frac{\sqrt{2}}{2}$)2+($\frac{\sqrt{2}}{2}$)2=5+2$\sqrt{2}$,
故答案為5+2$\sqrt{2}$.
點評 此題考查正方形的性質(zhì),勾股定理的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6-$\frac{π}{8}$ | B. | 6-$\frac{π}{4}$ | C. | 6+$\frac{π}{8}$ | D. | 6+$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平行于同一條直線的兩條直線平行 | |
B. | 如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi) | |
C. | 如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線 | |
D. | 如果兩個角的兩邊分別平行,則這兩個角相等或互補 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m≥4 | B. | -5<m≤-4 | C. | -5≤m≤-4 | D. | -5<m<-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com