15.若曲線f(x)=x3-ax2+b在點(diǎn)(1,f(1))處切線的傾斜角為$\frac{3π}{4}$,則a等于( 。
A.2B.-2C.3D.-1

分析 求得導(dǎo)函數(shù),利用f(x)=x3-ax2+b在點(diǎn)(1,f(1))處切線的傾斜角為$\frac{3π}{4}$,可得f′(1)=-1,由此可求a的值.

解答 解:求導(dǎo)函數(shù)可得f′(x)=3x2-2ax
∵函數(shù)f(x)=x3-ax2+b在x=1處的切線傾斜角為$\frac{3π}{4}$,
∴f′(1)=-1,
∴3-2a=-1,
∴a=2.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)y=$\sqrt{3}cosx+sinx({x∈R})$的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4
(1)若($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=-20,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角及|3$\overrightarrow{a}$+$\overrightarrow$|
(2)在矩形ABCD中,CD的中點(diǎn)為E,BC的中點(diǎn)為F,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,試用向量$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AE}$,$\overrightarrow{AF}$,并求$\overrightarrow{AE}•\overrightarrow{AF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓G:$\frac{{x}^{2}}{{3b}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)的上、下頂點(diǎn)和右焦點(diǎn)分別為M、N和F,且△MFN的面積為4$\sqrt{2}$.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點(diǎn).以AB為底作等腰三角形,頂點(diǎn)為P(-3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四棱錐P-ABCD底面為正方形,已知PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD;
(2)若PD=2,M為線段PA中點(diǎn),求三棱錐P-MNB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{{\sqrt{3}}}{3}$x,若頂點(diǎn)到漸近線的距離為$\sqrt{3}$,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{{3{y^2}}}{4}$=1B.$\frac{x^2}{12}-\frac{y^2}{4}$=1C.$\frac{x^2}{4}-\frac{y^2}{12}$=1D.$\frac{{3{x^2}}}{4}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.一圓錐的側(cè)面展開(kāi)圖恰好是一個(gè)半徑為4的半圓,則圓錐的高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.點(diǎn)P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1,F(xiàn)2,直線PF1與以坐標(biāo)原點(diǎn)O為圓心,a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過(guò)點(diǎn)F2,則$\frac{{S}_{△O{F}_{1}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.a(chǎn)=log0.60.9,b=ln0.9,c=20.9,則a,b,c的大小順序是c>a>b(用大于號(hào)連接)

查看答案和解析>>

同步練習(xí)冊(cè)答案