11.雙曲線$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{3+m}$=1的一個焦點為(2,0),則m的值為( 。
A.$\frac{1}{2}$B.1或3C.$\frac{1+\sqrt{2}}{2}$D.$\frac{\sqrt{2}-1}{2}$

分析 利用雙曲線方程以及焦點坐標(biāo),列出m的關(guān)系式,求解即可.

解答 解:∵雙曲線$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{3+m}$=1的焦點為(2,0),在x軸上且c=2,
∴m+3+m=c2=4.∴m=$\frac{1}{2}$.
故選:A.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點A(1,3),B(4,-1),則與向量$\overrightarrow{AB}$反方向的單位向量的坐標(biāo)為( 。
A.$(\frac{3}{5},-\frac{4}{5})$B.$(\frac{4}{5},\frac{3}{5})$C.$(-\frac{3}{5},\frac{4}{5})$D.$(-\frac{4}{5},\frac{3}{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)a>0且a≠1函數(shù)f(x)=ax+x2-xlna-a
(1)當(dāng)a=e時,求函數(shù)f(x)的單調(diào)區(qū)間;(其中e為自然對數(shù)的底數(shù))
(2)求函數(shù)f(x)的最小值;
(3)指出函數(shù)f(x)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知復(fù)數(shù)z=$\frac{1+3i}{3-i}$,則z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{5},x∈[-1,1]}\\{x,x∈[1,π)}\\{sinx,x∈[π,3π]}\end{array}\right.$求f(x)在區(qū)間[-1,3π]上的定積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x2-2x的遞減區(qū)間為(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知m∈R,復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i.
(1)若z與復(fù)數(shù)2-12i相等,求m的值;
(2)若z與復(fù)數(shù)12+16i互為共軛復(fù)數(shù),求m的值;
(3)若z對應(yīng)的點在x軸上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,D是邊AB上的中點,記$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{c}$,則向量$\overrightarrow{CD}$=( 。
A.-$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$B.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$C.-$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y∈R,i是虛數(shù)單位,且(2x+i)(1-i)=y,則y的值為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案