【題目】已知動圓的圓心為點(diǎn),圓過點(diǎn)且與被直線截得弦長為.不過原點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),且

1)求點(diǎn)的軌跡方程;

2)求三角形面積的最小值.

【答案】1.(216

【解析】

1)設(shè),根據(jù)圓的相交弦長公式,即可得出關(guān)系;

(2)由(1)得,曲線方程為,根據(jù)已知可得,設(shè)直線方程為,與拋物線方程聯(lián)立,得,利用根與系數(shù)關(guān)系,將三角形面積表示為的函數(shù),根據(jù)函數(shù)特征,即可求出最小值.

1)設(shè),圓的半徑

到直線的距離

由于圓被直線截得弦長為,所以

,化簡得,

所以點(diǎn)的軌跡方程為

2)由(或

解法一:設(shè)直線的方程為

消去

,即

由于,所以,

所以解得

所以直線方程為恒過定點(diǎn)

三角形面積

當(dāng)時(shí),

所以三角形面積的最小值為16

解法二:設(shè)

直線的方程為,則直線的方程為

,解得,

所以

同理可得

三角形面積

下面提供兩種求最小值的思路:

思路1:利用基本不等式

當(dāng)且僅當(dāng)時(shí),

所以三角形面積的最小值為16

思路2:用導(dǎo)數(shù)

不妨設(shè),則,

當(dāng)時(shí),;當(dāng)時(shí),;

所以上單調(diào)遞減,在上單調(diào)遞增

所以當(dāng)時(shí),

所以三角形面積的最小值為16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從拋物線上任意一點(diǎn)軸作垂線段垂足為,點(diǎn)是線段上的一點(diǎn),且滿足.

1)求點(diǎn)的軌跡的方程;

2)設(shè)直線與軌跡交于兩點(diǎn),點(diǎn)為軌跡上異于的任意一點(diǎn),直線分別與直線交于兩點(diǎn).問:軸正半軸上是否存在定點(diǎn)使得以為直徑的圓過該定點(diǎn)?若存在,求出符合條件的定點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐S-ABC,∠ABC=90°,DAC的中點(diǎn)SA=SB=SC.

(1)求證:SD⊥平面ABC;

(2)AB=BC,求證:BD⊥平面SAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐底面,,,上一點(diǎn),且.

(1)求證:平面

(2),,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面,,,點(diǎn),分別為的中點(diǎn).

1)若,求三棱柱的體積;

2)證明:平面;

3)請問當(dāng)為何值時(shí),平面,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的各棱長均為2,、、分別為棱、、的中點(diǎn),以為圓心、1為半徑,分別在面、面內(nèi)作弧,并將兩弧各分成五等份,分點(diǎn)順次為、、、以及、、、.一只甲蟲欲從點(diǎn)出發(fā),沿四面體表面爬行至點(diǎn),則其爬行的最短距離為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)證明當(dāng)n≥2時(shí),數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;

Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn;

Ⅲ)對任意nN*,使得 恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案