圓C:x2+y2-2y-4=0與直線l:mx-y+1-m=0的位置關(guān)系是( 。
分析:將圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑r,利用點到直線的距離公式求出圓心到直線l的距離d,判斷d與r的大小關(guān)系即可得出圓與直線的位置關(guān)系.
解答:解:將圓的方程化為標(biāo)準(zhǔn)方程得:x2+(y-1)2=5,
∵圓心(0,1)到直線mx-y+1-m=0的距離d=
|-m|
m2+1
|m|
|m|
=1<
5

∴圓與直線l的位置關(guān)系是相交.
故選B
點評:此題考查了直線與圓的位置關(guān)系,直線與圓的位置關(guān)系由d與r大小來判斷,d>r,直線與圓相離;d=r,直線與圓相切;d<r,直線與圓相交(r為圓的半徑,d為圓心到直線的距離).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l被圓C:x2+y2=2所截的弦長不小于2,則l與下列曲線一定有公共點的是( 。
A、(x-1)2+y2=1
B、
x2
2
+y2=1
C、y=x2
D、x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l被圓C:x2+y2=2所截的弦長不小于2,則在下列曲線中:
①y=x2-2②(x-1)2+y2=1③
x22
+y2=1
④x2-y2=1
與直線l一定有公共點的曲線的序號是
 
.(寫出你認(rèn)為正確的所有序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M是圓C:x2+y2=2上的一點,且MH⊥x軸,H為垂足,點N滿足NH=
2
2
MH,記動點N的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標(biāo)原點,求△AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=1”是“直線l:y=kx+a和圓C:x2+y2=2相交”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=2,坐標(biāo)原點為O.圓C上任意一點A在x軸上的射影為點B,已知向量
OQ
=t
OA
+(1-t)
OB
(t∈R,t≠0)

(1)求動點Q的軌跡E的方程;
(2)當(dāng)t=
2
2
時,過點S(0,-
1
3
)的動直線l交軌跡E于A,B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過T點?若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案