6.在△ABC中,$a=2\sqrt{2},b=3,A=45°$,則此三角形解的個數(shù)為( 。
A.0B.1C.2D.不確定

分析 計算AB邊上的高,根據(jù)a,b,d之間的關(guān)系進行判斷.

解答 解:設(shè)△ABC的邊AB邊上的高為d,則d=bsinA=$\frac{3\sqrt{2}}{2}$,
∵d<a<b,
∴三角形有兩解.
故選C.

點評 本題考查了三角形解得個數(shù)判斷,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,則z=2x-2y-1最大值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某同學在一次研究性學習中發(fā)現(xiàn),以下5個不等關(guān)系式子
 ①$\sqrt{3}$-1>$2-\sqrt{2}$
②$2-\sqrt{2}$>$\sqrt{5}-\sqrt{3}$
③$\sqrt{5}-\sqrt{3}$>$\sqrt{6}-2$
④$\sqrt{6}-2$>$\sqrt{7}-\sqrt{5}$
⑤$\sqrt{7}-\sqrt{5}$>$2\sqrt{2}-\sqrt{6}$
(1)上述五個式子有相同的不等關(guān)系,分析其結(jié)構(gòu)特點,請你再寫出一個類似的不等式
(2)請寫出一個更一般的不等式,使以上不等式為它的特殊情況,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)曲線y=ax-ln(2x+1)在點(0,0)處的切線方程為y=2x,則a=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.對于數(shù)列{an},{bn},Sn為數(shù)列{an}是前n項和,且Sn+1-(n+1)=Sn+an+n,a1+b1=2,bn+1=3bn+2,n∈N*
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=$\frac{2({a}_{n}+n)}{n(_{n}+1)}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an}的公比q>1,a2,a3是方程x2-6x+8=0的兩根.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{2n•an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.極坐標與直角坐標系有相同的長度單位,以原點O為極點,以x軸正半軸為極軸,已知直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標方程為ρsin2θ=4cosθ
(1)求C的直角坐標方程
(2)設(shè)直線l與曲線C交于A,B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)α∈(0,π),sin α+cos α=$\frac{1}{3}$,則cos 2α的值是( 。
A.$\frac{\sqrt{17}}{9}$B.$\frac{-2\sqrt{2}}{3}$C.-$\frac{\sqrt{17}}{9}$D.$\frac{\sqrt{17}}{9}$或-$\frac{\sqrt{17}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=2-3x-$\frac{4}{x}$(x>0)的最值情況是( 。
A.有最小值2-4$\sqrt{3}$B.有最大值2-4$\sqrt{3}$C.有最小值2+4$\sqrt{3}$D.有最大值2+4$\sqrt{3}$

查看答案和解析>>

同步練習冊答案