1.已知公差不為0的等差數(shù)列{an}的首項a1為a(a∈R),且$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_4}$成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)對n∈N*,試比較$\frac{1}{a_2}+\frac{1}{a_4}+\frac{1}{a_8}+…+\frac{1}{{{a_{2^n}}}}$與$\frac{1}{a_1}$的大。

分析 (1)設等差數(shù)列{an}的公差為d,由題意可知,$(\frac{1}{{a}_{2}})^{2}=\frac{1}{{a}_{1}}•\frac{1}{{a}_{4}}$
可得d=a1=a.即通項公式an=na.
(2)記Tn=$\frac{1}{a_2}+\frac{1}{a_4}+\frac{1}{a_8}+…+\frac{1}{{{a_{2^n}}}}$
Tn=$\frac{1}{a}$($\frac{1}{2}$+$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)=$\frac{1}{a}$•$\frac{\frac{1}{2}[1-\frac{1}{{2}^{n}}]}{1-\frac{1}{2}}$=$\frac{1}{a}$[1-($\frac{1}{2}$)n].
,當a>0時,Tn<$\frac{1}{{a}_{1}}$;當a<0時,Tn>$\frac{1}{{a}_{1}}$.

解答 解:(1)設等差數(shù)列{an}的公差為d,由題意可知,$(\frac{1}{{a}_{2}})^{2}=\frac{1}{{a}_{1}}•\frac{1}{{a}_{4}}$
即(a1+d)2=a1(a1+3d),從而a1d=d2,
因為d≠0,所以d=a1=a.故通項公式an=na.
(2)記Tn=$\frac{1}{a_2}+\frac{1}{a_4}+\frac{1}{a_8}+…+\frac{1}{{{a_{2^n}}}}$
因為a2n=2na,
所以Tn=$\frac{1}{a}$($\frac{1}{2}$+$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)
=$\frac{1}{a}$•$\frac{\frac{1}{2}[1-\frac{1}{{2}^{n}}]}{1-\frac{1}{2}}$=$\frac{1}{a}$[1-($\frac{1}{2}$)n].
從而,當a>0時,Tn<$\frac{1}{{a}_{1}}$;
當a<0時,Tn>$\frac{1}{{a}_{1}}$.

點評 本題考查了等差、等比數(shù)列的性質(zhì),數(shù)列求和,考查了計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.設z=3+4i,則復數(shù)z的模為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,設Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別是x軸、y軸正方向同向的單位向量,若向量$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則把有序數(shù)對(x,y)叫做向量$\overrightarrow{OP}$在坐標系xOy中的坐標,在此坐標系下,假設$\overrightarrow{OA}$=(-2,2$\sqrt{2}$),$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(5,-3$\sqrt{2}$),則下列命題不正確的是( 。
A.$\overrightarrow{{e}_{1}}$=(1,0)B.|$\overrightarrow{OA}$|=2$\sqrt{3}$C.$\overrightarrow{OA}$∥$\overrightarrow{BC}$D.$\overrightarrow{OA}$⊥$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知正三角形ABC的邊長為2,點D是邊BC上一動點,點D到AB、AC的距離分別為x、y,則xy的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知復數(shù)z=bi(b∈R),$\frac{z-2}{1+i}$是實數(shù),i是虛數(shù)單位.
(1)求復數(shù)z;
(2)求$|{\frac{1-z}{2+i}}|$
(3)若復數(shù)(m+z)2所表示的點在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.乒乓球隊的8名隊員中有3名主力隊員,要派5名隊員參加團體比賽,其中的3名主力隊員安排在第一、第三、第五位置,其余5名隊員選2名安排在第二、第四位置,那么不同的出場安排共有120種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為$({\sqrt{3},0})$,
(1)求雙曲線C的標準方程;
(2)求雙曲線C的離心率;
(3)求雙曲線C的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知圓M:(x-2a)2+y2=4a2與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)交于A、B兩點,點D為圓M與x軸正半軸的交點,點E為雙曲線C的左頂點,若四邊形EADB為菱形,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.3C.$\frac{\sqrt{10}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(0<a<b)的半焦距為c,直線L過(b,0),(0,a)兩點.已知原點到直線L的距離為$\frac{2c}{5}$,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{5}{4}$或5C.5D.$\sqrt{5}$

查看答案和解析>>

同步練習冊答案