14.已知四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=$\sqrt{6}$.
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求三棱錐P-BCE的體積.

分析 (I)連接AC交BD于O點,由BD⊥AC,BD⊥OP得出BD⊥平面PAC,故PC⊥BD;
(II)利用勾股定理計算OA,OP,證明OA⊥OP,得出三角形PCE的面積,于是VP-BCE=VB-PCE=$\frac{1}{3}$S△PCE•OP.

解答 證明:(I)連接AC交BD于O點,
∵四邊形ABCD是菱形,∴AC⊥BD,O是BD的中點,
∵PB=PD,∴PO⊥BD,
又AC∩OP=O,AC?平面PAC,OP?平面PAC,
∴BD⊥平面PAC,又PC?平面PAC,
∴BD⊥PC.
(II)∵四邊形ABCD是菱形,∠BAD=60°,
∴BD=AB=AD=2,∴OB=1,OA=$\sqrt{3}$,
∴OP=$\sqrt{P{B}^{2}-O{B}^{2}}$=$\sqrt{3}$,∴OA2+OP2=PA2,即OA⊥OP.
∴S△PCE=$\frac{1}{2}$S△PAC=S△POA=$\frac{1}{2}$×$\sqrt{3}×\sqrt{3}$=$\frac{3}{2}$.
∴又OB⊥平面PAC,
∴VP-BCE=VB-PCE=$\frac{1}{3}$S△PCE•OB=$\frac{1}{3}×$$\frac{3}{2}$×1=$\frac{1}{2}$.

點評 題考查了線面垂直的判定與性質,棱錐的體積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)為偶函數(shù),且在[0,+∞)上單調遞增,f(-3)=0,則滿足f(x2-x+1)>0的x的取值范圍為(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m+1,-m),$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m的值為( 。
A.-1B.1C.-$\frac{1}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+2≥y\\ x+2y≥4\\ y≤5-2x\end{array}\right.$則z=3x+2y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在(2x2-$\frac{1}{\sqrt{x}}$)6的展開式中,含x7的項的系數(shù)是240.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx+$\frac{ax}{x+1}$(a∈R)
(1)若函數(shù)f(x)在區(qū)間(0,4)上單調遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線y=2x相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin(2x+φ),將其圖象向左平移$\frac{π}{6}$個單位長度后得到的函數(shù)為偶函數(shù),則φ的最小正值為(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.sin210°的值等于( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知圓x2+y2=4,直線l:y=x+b,若圓x2+y2=4上恰有4個點到直線l的距離都等于1,則b的取值范圍為( 。
A.(-1,1)B.[-1,1]C.$[{-\sqrt{2},\sqrt{2}}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

同步練習冊答案