1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a:b:c=2:3:4,則△ABC中最大角的余弦值是$-\frac{1}{4}$.

分析 根據(jù)三邊之比表示出a,b,c,得到c對(duì)的角最大,利用余弦定理即可求出cosC的值.

解答 解:根據(jù)題意得:a=2k,b=3k,c=4k,且最大角為C,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{4{k}^{2}+9{k}^{2}-16{k}^{2}}{12{k}^{2}}$=$-\frac{1}{4}$.
故答案為:$-\frac{1}{4}$.

點(diǎn)評(píng) 此題考查了余弦定理在解三角形中的應(yīng)用,熟練掌握余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,$\overrightarrow$=(2,1),且λ$\overrightarrow{a}$+$\overrightarrow$=0(λ∈R),則|λ|=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.一條直線被兩坐標(biāo)軸截得線段AB,若點(diǎn)(a,b)恰為線段AB的中點(diǎn),則這條直線的一般式方程為bx+ay-2ab=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-2|x|-1,作出函數(shù)的圖象,并判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=2|x|-1,記a=f(log0.53),b=f(log25),c=f(0),則a,b,c 的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.集合A={x|1≤x<3},B={x|a<x≤2a-1},若B⊆A,則實(shí)數(shù)a的取值范圍是( 。
A.(1,2)B.[1,2)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2-i}{1+i}$(是虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a=$\frac{1}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某同學(xué)參加科普知識(shí)競(jìng)賽,需回答三個(gè)問題,競(jìng)賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分. 假設(shè)這名同學(xué)每題回答正確的概率均為0.8,且各題回答正確與否相互之間沒有影響.
(1)求這名同學(xué)回答這三個(gè)問題的總得分X的分布列和數(shù)學(xué)期望E(X);
(2)求這名同學(xué)總得分(不為負(fù)分即X≥0)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案