已知雙曲線-=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為( )
A.2 B.2
C.4 D.4
科目:高中數(shù)學 來源: 題型:
在△AOB(O為坐標原點)中,=(2cos α,2sin α),=(5cos β,5sin β).若·=-5,則S△AOB=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知雙曲線的中心在原點,離心率為若它的一條準線與拋物線y2=4x的準線重合,則該雙曲線與拋物線y2=4x的交點到原點的距離是 ( )
A.2 B. C.18+12 D.21
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(P、A、B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設(shè)直線AB上一點M滿足=λ,證明線段PM的中點在y軸上
(Ⅲ)當A=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為( )
A. B.1
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知有公共焦點的橢圓與雙曲線的中心為原點,焦點在x軸上,左、右焦點分別為F1、F2,且它們在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,雙曲線的離心率的取值范圍為(1,2).則該橢圓的離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
某重點中學要把9臺相同的電腦送給農(nóng)村三所希望小學,每個小學到少2臺電腦,不同的送法種數(shù)為( )
A.10種 B.9種 C.8種 D.6種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com