拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(P、A、B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求拋物線C的焦點坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點M滿足=λ,證明線段PM的中點在y軸上
(Ⅲ)當(dāng)A=1時,若點P的坐標(biāo)為(1,-1),求∠PAB為鈍角時點A的縱坐標(biāo)y1的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
已知0<a<b,且a+b=1,則下列不等式中,正確的是( ).
A.log2a>0 B.2a-b<
C.2+< D.log2a+log2b<-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,過拋物線y2=2px(p>0)上一定點p(x0,y0)(y0>0),作兩條直線分別交拋物線于A (x1,y1),B(x2,y2).
(1)求該拋物線上縱坐標(biāo)為的點到其焦點F的距離;
(Ⅱ)當(dāng)PA與PB的斜率存在且傾斜角互補時,求的值,并證明直線AB的斜率是非零常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域 (不含邊界)記為W,其左半部分記為W1,右半部分記為W2.
(1)分別用不等式組表示 W1和W2;
(Ⅱ)若區(qū)域Ⅳ中的動點p(x,y)到l1,l2的距離之積等于d2,求P點的軌跡C的方程;
(Ⅲ)設(shè)不過原點O的直線l與(Ⅱ)中的曲線C相交于Ml,M2兩點,且與l1,l2分別交于M3,M4兩點,求證△OM1M2的重心與△OM3M3的重心重合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線-=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-2,-1),則雙曲線的焦距為( )
A.2 B.2
C.4 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C的頂點為原點,焦點在x軸上,直線y=x與拋物線C交于A,B兩點.若P(2,2)為AB的中點,則拋物線C的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在復(fù)平面內(nèi),設(shè)向量=(x1,y1), =(x2,y2),設(shè)復(fù)數(shù)Z1=x1+y1i(x1,y1,x2,y2∈R)則·等于 ( )
A.Z2+Z1
B.Z2-Z1
C.(Z2-Z1)
D.(Z2+Z1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com