13.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(sinx+cosx,sinx-cosx)(x∈R),若$\overrightarrow{a}$⊥$\overrightarrow$,則x的取值集合為( 。
A.{x|x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z}B.{x|x=kπ+$\frac{π}{8}$,k∈Z}C.{x|x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z}D.{x|x=kπ+$\frac{π}{4}$,k∈Z}

分析 由向量垂直的性質(zhì)得$\overrightarrow{a}•\overrightarrow$=sinx(sinx+cosx)+cosx(sinx-cosx)=0,由此利用二倍角公式、三角函數(shù)恒等變換能求出x的取值集合.

解答 解:∵向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(sinx+cosx,sinx-cosx)(x∈R),$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}•\overrightarrow$=sinx(sinx+cosx)+cosx(sinx-cosx)
=sin2x+sinxcosx+cosxsinx-cos2x
=2sinxcosx-(cos2x-sin2x)
=sin2x-cos2x
=$\sqrt{2}$sin(2x-$\frac{π}{4}$)=0,
∴$2x-\frac{π}{4}=kπ$,k∈Z,
解得x的取值集合{x|x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z}.
故選:A.

點評 本題考查角的取值集合的求法,涉及到向量垂直、二倍角公式、三角函數(shù)恒等變換等基礎知識,考查推理論證能力、運算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.數(shù)列{an}的前n項和為Sn,若${a_1}=1,{S_n}=3{a_{n+1}}({n∈{N^*}}),則{S_n}$=$(\frac{4}{3})^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.觀察等式:$\frac{sin30°+sin90°}{cos30°+cos90°}$=$\sqrt{3}$,$\frac{sin15°+sin75°}{cos15°+cos75°}$=1,$\frac{sin20°+sin40°}{cos20°+cos40°}$=$\frac{\sqrt{3}}{3}$照此規(guī)律,對于一般的角α,β,有等式$\frac{sinα+sinβ}{cosα+cosβ}$=tan$\frac{α+β}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若三條線段的長度分別為4、6、8,則用這三條線段( 。
A.能組成鈍角三角形B.能組成銳角三角形
C.能組成直角三角形D.不能組成三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)的導函數(shù)為f'(x),且$f(1)=\frac{1}{2}$,不等式$f'(x)≤\frac{1}{x}+x$的解集為(0,1],則不等式$\frac{f(x)-lnx}{x^2}>\frac{1}{2}$的解集為( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知x∈(0,+∞),觀察下列各式:$x+\frac{1}{x}>2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}≥3,x+\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}≥4,…$類比得$x+\frac{a}{x^n}≥n+1({n∈{N^*}})$,則a=nn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{5π}{6}$B.$\frac{5π}{3}$C.$\frac{π+1}{3}$D.$\frac{2π+1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知f(x)是定義在(a,b)內(nèi)的可導函數(shù),則“f'(x)>0”是“f(x)在(a,b)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出下列四個命題:①若a>b>0,則$\frac{1}{a}$>$\frac{1}$;②若a>b>0,則a-$\frac{1}{a}$>b-$\frac{1}$;③若a>b>0,則$\frac{2a+b}{a+2b}$>$\frac{a}$;④a>0,b>0且2a+b=1,則$\frac{2}{a}$+$\frac{1}$的最小值為9.
其中正確命題的序號是②④(把你認為正確命題的序號都填上).

查看答案和解析>>

同步練習冊答案