6.已知${log_a}b=-1,\;{2^a}>3,\;c>1$,設(shè)$x=-{log_b}\sqrt{a}$,y=logbc,$z=\frac{1}{3}a$,則x,y,z的大小關(guān)系正確的是(  )
A.z>x>yB.z>y>xC.x>y>zD.x>z>y

分析 ${log_a}b=-1,\;{2^a}>3,\;c>1$,可得$x=-{log_b}\sqrt{a}$=-$\frac{1}{2}$logba=$\frac{1}{2}$.2a>3,a>log23>1,$b=\frac{1}{a}$∈(0,1).進(jìn)而得出結(jié)論.

解答 解:∵${log_a}b=-1,\;{2^a}>3,\;c>1$,
∴$x=-{log_b}\sqrt{a}$=-$\frac{1}{2}$logba=-$\frac{1}{2}$×$\frac{1}{-1}$=$\frac{1}{2}$,
2a>3,a>log23>1,$b=\frac{1}{a}$∈(0,1).
y=logbc<0,$z=\frac{1}{3}a$>$\frac{1}{3}lo{g}_{2}3$>$\frac{1}{3}×lo{g}_{2}\sqrt{8}$=$\frac{1}{2}$,
∴z>x>y.
故選:A.

點(diǎn)評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)復(fù)數(shù)z=-2+i(i是虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則|(1+z)•$\overline{z}$|等于( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.5$\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-3,5),若(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{c}$,則$\overrightarrow{c}$的坐標(biāo)可以是(  )
A.(-2,3)B.(-2,-3)C.(4,-4)D.(4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2-c2=ac-bc.
(Ⅰ)求∠A的大;
(Ⅱ)若a=$\sqrt{3}$,且sinA+sin(B-C)=2sin2C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ax2+bx+c(a>0)有兩個(gè)零點(diǎn)1,2,數(shù)列{xn}滿足xn+1=xn-$\frac{f({x}_{n})}{f′({x}_{n})}$,設(shè)an=ln$\frac{{x}_{n}-2}{{x}_{n}-1}$,若a1=$\frac{1}{2}$,xn>2,則數(shù)列{an}的通項(xiàng)公式an=2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$cosA=\frac{3}{5}$,△ABC的面積為4.
(Ⅰ)求$\overrightarrow{AB}•\overrightarrow{AC}$的值;
(Ⅱ)若b=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),則圓心到直線y=x+3的距離為(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如果直線l:y=kx-1(k>0)與雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的一條漸近線平行,那么k=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=lnx-ax(a∈R).
(Ⅰ)若直線y=3x-1是函數(shù)f(x)圖象的一條切線,求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在[1,e2]上的最大值為1-ae(e為自然對數(shù)的底數(shù)),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案