14.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x和y的值分別為( 。
A.3,5B.5,5C.3,7D.5,7

分析 由已知有中這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,可得x,y的值.

解答 解:由已知中甲組數(shù)據(jù)的中位數(shù)為65,
故乙組數(shù)據(jù)的中位數(shù)也為65,
即y=5,
則乙組數(shù)據(jù)的平均數(shù)為:66,
故x=3,
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是莖葉圖,平均數(shù)和中位數(shù),難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐A-BCFE中,四邊形EFCB為梯形,EF∥BC,且EF=$\frac{3}{4}$BC,△ABC是邊長為2的正三角形,頂點(diǎn)F在AC上的射影為點(diǎn)G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)證明:平面FGB⊥平面ABC;
(2)求二面角E-AB-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)當(dāng)m=1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若對任意的x1∈[1,e],總存在x2∈[1,e],使$\frac{f({x}_{1})}{{x}_{1}}$•$\frac{g({x}_{2})}{{x}_{2}}$=-1,其中e是自然對數(shù)的底數(shù).求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果隨機(jī)變量ξ~B(6,$\frac{1}{2}$),則P(ξ=3)的值為(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{3}{16}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足zi=1+i,則z2=(  )
A.-2iB.2iC.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線x2=2py(p>0)交于A,B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M-m(  )
A.與a有關(guān),且與b有關(guān)B.與a有關(guān),但與b無關(guān)
C.與a無關(guān),且與b無關(guān)D.與a無關(guān),但與b有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則z=3x-4y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若${({1+mx})^6}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,且a1-a2+a3-a4+a5-a6=-63,則實(shí)數(shù)m的值為3或-1.

查看答案和解析>>

同步練習(xí)冊答案