1.已知O為坐標(biāo)原點(diǎn),橢圓C:$\frac{x^2}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為P,右頂點(diǎn)為Q,以
F1、F2為直徑的圓O與橢圓C內(nèi)切,直線PQ與圓O相交得到的弦長(zhǎng)為$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與以F1、F2為直徑的圓O相切,并且與橢圓C交于不同的兩點(diǎn)A、B,求△AOB的面積的最大值.

分析 (Ⅰ)由題意可知:P(0,b),Q(a,0),則直線PQ的方程:ay+bx-ab=0,則O到直線PQ的距離d=$\frac{丨-ab丨}{\sqrt{{a}^{2}+^{2}}}$=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$,由以F1、F2為直徑的圓O與橢圓C內(nèi)切,則b=c,由此能求出橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)討論直線AB的斜率不存在,求得△ABO的面積,若存在設(shè)直線AB:y=kx+m,A(x1,y1)、B(x2,y2),由圓O與直線l相切,得m2=k2+1.由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式,結(jié)合已知條件能求出△AOB的面積的最大值.

解答 解:(Ⅰ)由題意可知:P(0,b),Q(a,0),
則直線PQ的方程:ay+bx-ab=0,
則O到直線PQ的距離d=$\frac{丨-ab丨}{\sqrt{{a}^{2}+^{2}}}$=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$,
由以F1、F2為直徑的圓O與橢圓C內(nèi)切,則b=c,
在△ODP中,根據(jù)勾股定理可知:
($\frac{ab}{\sqrt{{a}^{2}+^{2}}}$)2+($\frac{\sqrt{3}}{3}$)2=b2,①
由a2=b2+c2=2b2,②
由①②解得:b2=1,a2=2,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)當(dāng)直線AB的斜率不存在時(shí),AB過橢圓的焦點(diǎn),
令x=1代入橢圓方程可得y=±$\frac{\sqrt{2}}{2}$,
可得|AB|=$\sqrt{2}$,S△ABO=$\frac{\sqrt{2}}{2}$;
當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB:y=kx+m,A(x1,y1)、
B(x2,y2),
∵圓O與直線l相切,
∵$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=1,
∴m2=k2+1.
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,消去y,得(1+2k2)x2+4kmx+2m2-2=0,
∵直線l與橢圓交于兩個(gè)不同的點(diǎn),
∴△=(4km)2-4(1+2k2)(2m2-2)>0,即m2-2k2<1,
∴k2>0.
由韋達(dá)定理可知:x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
則丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{(-\frac{4km}{1+2{k}^{2}})^{2}-4×\frac{2{m}^{2}-2}{1+2{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{2\sqrt{2}\sqrt{{k}^{2}}}{1+2{k}^{2}}$,
△AOB的面積S=$\frac{1}{2}$•丨AB丨•d=$\frac{\sqrt{2}\sqrt{{k}^{2}(1+{k}^{2})}}{1+2{k}^{2}}$,
令1+2k2=t(t>1),可得k2=$\frac{t-1}{2}$,則S=$\frac{\sqrt{2}\sqrt{\frac{t-1}{2}•\frac{t+1}{2}}}{t}$
=$\frac{\sqrt{2}}{2}$•$\sqrt{\frac{{t}^{2}-1}{{t}^{2}}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{1-\frac{1}{{t}^{2}}}$<$\frac{\sqrt{2}}{2}$.
綜上可得,△AOB的面積的最大值為$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題主要考查橢圓的概念和性質(zhì),直線和橢圓的位置關(guān)系,圓的性質(zhì)等知識(shí),意在考查轉(zhuǎn)化和化歸思想,數(shù)形結(jié)合思想和學(xué)生的運(yùn)算求解能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三角形ABC中,C=90°,A=30°,過C作射線l交線段AB于點(diǎn)D,則S△ABC>2S△ACD的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;      
(2)求數(shù)列$\{\frac{1}{a_n}-n\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:存在向量$\overrightarrow{a}$,$\overrightarrow$,使得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|,命題q:對(duì)任意的向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$.則下列判斷正確的是( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∨(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列4個(gè)命題中正確命題的個(gè)數(shù)是
(1)對(duì)于命題p:?x0∈R,使得x02-1≤0,則¬p:?x∈R都有x2-1>0
(2)已知X~N(2,σ2),P(x>2)=0.5
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=2x-3
(4)“x≥1”是“x+$\frac{1}{x}$≥2”的充分不必要條件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2
(1)記m(x)=f′(x),若m′(1)=3,求實(shí)數(shù)a的值;
(2)已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)S一個(gè)骰子的試驗(yàn),事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“小于4的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A+$\overline{B}$發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若θ∈[0,π],則$sin({θ+\frac{π}{3}})>\frac{1}{2}$成立的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}滿足${a_1}>\frac{3}{2}$,${a_{n+1}}={a_n}^2-{a_n}+1$,且$\sum_{i=1}^{2017}{\frac{1}{a_i}}=2$,則4a2018-a1的最大值為-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案