在半徑為的圓內(nèi),作內(nèi)接等腰三角形,當?shù)走吷细邽槎嗌贂r,它的面積最大?
時,等腰三角形的面積最大.
如圖,設(shè)圓內(nèi)接等腰三角形的底邊長為,高為,那么                                                    

,                        
解得,于是內(nèi)接三角形的面積為:

從而
,
,解得,由于不考慮不存在的情況,所在區(qū)間上列表示如下:









增函數(shù)
最大值
減函數(shù)
由此表可知,當時,等腰三角形的面積最大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A、B、C是直線l上的三點,O是直線l外一點,向量滿足
=[f(x)+2f′(1)]-ln(x+1)
(Ⅰ)求函數(shù)y=f(x)的表達式;
(Ⅱ)若x>0,證明:f(x)>;
(Ⅲ)若不等式x2f(x2)+m2-2m-3對x∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求的導(dǎo)數(shù);
(2)求證:不等式上恒成立;
(3)求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分) 已知函數(shù)-4(a∈N﹡).(Ⅰ)若函數(shù)在(1,+∞)上是增函數(shù),求a的值;(Ⅱ)在(Ⅰ)的條件下,若關(guān)于x的方程在區(qū)間[1,e]上恰有一個實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本大題滿分12分)
給出定義在上的三個函數(shù):,已知處取極值.
(I)確定函數(shù)的單調(diào)性;
(II)求證:當成立.
(III)把函數(shù)的圖象向上平移6個單位得到函數(shù)的圖象,試確定函數(shù)的零點個數(shù),并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

=    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖像過點P(-1,2),且在點P處的切線恰好與直線垂直。
(1)求函數(shù)的解析式;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù) 上的最小值;
(Ⅲ)對一切的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)y=x3+lnx在x=1處的導(dǎo)數(shù)為    .

查看答案和解析>>

同步練習冊答案