16.已知圓錐的表面積為6,且它的側(cè)面展開圖是一個半圓,則這個圓錐的底面半徑為(  )
A.$\sqrt{\frac{2}{π}}$B.$\sqrt{\frac{1}{π}}$C.$\sqrt{2π}$D.$\sqrt{π}$

分析 利用圓錐的表面積公式即可求出圓錐的底面半徑.

解答 解:設(shè)圓錐的底面半徑為r,母線長為l,
∵圓錐的側(cè)面展開圖是一個半圓,
∴2πr=πl(wèi),
∴l(xiāng)=2r,
∵圓錐的表面積為πr2+πrl=πr2+2πr2=6,
∴r2=$\frac{2}{π}$,
即r=$\sqrt{\frac{2}{π}}$,
故選A.

點評 本題主要考查圓錐的表面積公式以及應(yīng)用,利用條件建立母線和半徑之間的關(guān)系是解決本題的關(guān)鍵,考查學(xué)生的運算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若命題“?x∈[-1,1],1+2x+a•4x<0”是假命題,則實數(shù)a的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,若c=2,a2=b2+1,則acosB=( 。
A.$\frac{5}{8}$B.$\frac{5}{4}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線x2-$\frac{{y}^{2}}{m}$=1的左右焦點分別為F1、F2,過點F2的直線交雙曲線右支于A、B兩點,若△ABF1是以A為直角頂點的等腰三角形,則實數(shù)m的值為4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(ax-1)ex,a∈R,e是自然對數(shù)底數(shù).
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={1,3,7,8},B={1,5,8},則A∪B等于( 。
A..{1,8}B..{1,3,7,8}C..{1,5,7,8}D.{1,3,5,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某圓錐底面半徑為4,高為3,則此圓錐的側(cè)面積為20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(1)求f(x)的單調(diào)增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若A為銳角且f(A)=$\frac{\sqrt{3}}{2}$,b+c=4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(m-1,2),$\overrightarrow$=(m,-3),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m等于( 。
A.2或-3B.-2或3C.$\frac{3}{5}$D.3

查看答案和解析>>

同步練習(xí)冊答案