【題目】已知函數(shù),若關(guān)于的方程有兩個不等實數(shù)根,,且,則的最小值是( )

A. B. C. D.

【答案】D

【解析】分析:由題意首先確定函數(shù)f(x)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)將二元問題轉(zhuǎn)化為一元問題,最后利用導(dǎo)函數(shù)構(gòu)造函數(shù)確定最值即可.

詳解:因為f(x)=x3+sinx是奇函數(shù)且f′(x)=3x2+cosx≥0,所以f(x)=x3+sinx單調(diào)遞增,

若關(guān)于x的方程f(g(x))+m=0恰有兩個不等實根

等價于f(t)+m=0有且只有一個根,t=g(x)有且只有兩個根

,

所以

設(shè)函數(shù)t(x)=x-2ln(x+l)+2,,

所以當(dāng)0<x<1時,t′(x)<0,t(x)單調(diào)遞減,

當(dāng)x>1時,t′(x)>0,t(x)單調(diào)遞增,

所以,f(x)的極小值即最小值是t(1)=3-21n2,即的最小值為3-2ln2.

本題選擇D選項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, 其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;

(2)求該廠家廣告區(qū)域的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地擬在一個U形水面PABQ(∠A=B=90°)上修一條堤壩(EAP上,NBQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點EN2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l

1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達(dá)式,并寫出定義域;

2)求l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(
A.f(x)=
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過棱AB的中點E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點F,G,H.

(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點(為自然對數(shù)的底數(shù)).

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乒乓球臺面被網(wǎng)分成甲、乙兩部分,如圖,甲上有兩個不相交的區(qū)域A,B,乙被劃分為兩個不相交的區(qū)域C,D,某次測試要求隊員接到落點在甲上的來球后向乙回球,規(guī)定:回球一次,落點在C上記3分,在D上記1分,其它情況記0分.對落點在A上的來球,小明回球的落點在C上的概率為 ,在D上的概率為 ;對落點在B上的來球,小明回球的落點在C上的概率為 ,在D上的概率為 .假設(shè)共有兩次來球且落在A,B上各一次,小明的兩次回球互不影響,求:

(1)小明兩次回球的落點中恰有一次的落點在乙上的概率;
(2)兩次回球結(jié)束后,小明得分之和ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、、是同一平面上不共線的四點,若存在一組正實數(shù)、、,使得,則三個角、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

同步練習(xí)冊答案