【題目】某工廠共有50位工人組裝某種零件.下面的散點圖反映了工人們組裝每個零件所用的工時(單位:分鐘)與人數(shù)的分布情況.由散點圖可得,這50位工人組裝每個零件所用工時的中位數(shù)為___________.若將500個要組裝的零件分給每個工人,讓他們同時開始組裝,則至少要過_________分鐘后,所有工人都完成組裝任務.(本題第一空2分,第二空3分)

【答案】3.3; 33.14

【解析】

①根據(jù)工時從小到大依次分析得出工時3.4人數(shù)16,工時3.5人數(shù)8,工時3.3人數(shù)12,即可得到中位數(shù);

②計算出工時平均數(shù)即可得解.

①根據(jù)散點圖:工時3.0人數(shù)3,工時3.1人數(shù)5,工時3.2人數(shù)6,工時3.3人數(shù)12,工時3.4人數(shù)16,工時3.5人數(shù)8,所以工時的中位數(shù)為3.3;

②將500個要組裝的零件分給每個工人,讓他們同時開始組裝,

至少需要時間:

故答案為:①3.3;②33.14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面為等邊三角形,的中點,上的點,且

1)求證:平面平面;

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調性;

2)已知函數(shù)的兩個極值點,若,①證明:;②證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有六名同學參加演講比賽,編號分別為1,2,3,45,6,比賽結果設特等獎一名,,,,四名同學對于誰獲得特等獎進行預測.說:不是1號就是2號獲得特等獎;說:3號不可能獲得特等獎;說:4,56號不可能獲得特等獎;說:能獲得特等獎的是4,56號中的一個.公布的比賽結果表明,,,中只有一個判斷正確.根據(jù)以上信息,獲得特等獎的是( )號同學.

A.1B.2C.3D.4,5,6號中的一個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒中有形狀、大小、質地完全相同的5張撲克牌,其中3張紅桃,1張黑桃,1張梅花.現(xiàn)從盒中一次性隨機抽出2張撲克牌,則這2張撲克牌花色不同的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點為F,直線l與拋物線C交于PQ兩點.

1)若l過點F,拋物線C在點P處的切線與在點Q處的切線交于點G.證明:點G在定直線上.

2)若p2,點M在曲線y上,MP,MQ的中點均在拋物線C上,求△MPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,平面平面,.

(1)求證:平面平面

(2)若與平面所成的線面角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司為了解本公司快遞業(yè)務情況,隨機調查了100個營業(yè)網(wǎng)點,得到了這些營業(yè)網(wǎng)點2019年全年快遞單數(shù)增長率x的頻數(shù)分布表:

1)分別估計該快遞公司快遞單數(shù)增長率不低于40%的營業(yè)網(wǎng)點比例和快遞單數(shù)負增長的營業(yè)網(wǎng)點比例;

2)求2019年該快遞公司快遞單數(shù)增長率的平均數(shù)和標準差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作為代表).(精確到0.01)參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電動車生產(chǎn)企業(yè),上年度生產(chǎn)電動車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應市場需求,計劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價相應提高的比例為,且當不超過0.5時,預計年銷售量增加的比例為,而當超過0.5時,預計年銷售量不變.已知年利潤=(出廠價-投入成本)×年銷售量.則本年度預計的年利潤與投入成本增加的比例的關系式為______;為使本年度利潤比上年有所增加,投入成本增加的比例的取值范圍為______

查看答案和解析>>

同步練習冊答案