已知圓C的圓心在曲線y=上,圓C過坐標(biāo)原點(diǎn)O,且與x軸、y軸交于A、B兩點(diǎn),則△OAB的面積是(  )
A.2       B.3         C.4       D.8
C
設(shè)圓心C的坐標(biāo)是(t,).
∵圓C過坐標(biāo)原點(diǎn),∴|OC|2=t2,
設(shè)圓C的方程是
(x-t)2+(y-)2=t2.
令x=0,得y1=0,y2
故B點(diǎn)的坐標(biāo)為(0,).
令y=0,得x1=0,x2=2t,
故A點(diǎn)的坐標(biāo)為(2t,0),
∴SOAB|OA|·|OB|=×||×|2t|=4,即△OAB的面積為4.故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半圓的直徑的長(zhǎng)為4,點(diǎn)平分弧,過的垂線交,交.
(1)求證:
(2)若的角平分線,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P是曲線x2-y-1nx=0上的任意一點(diǎn),則點(diǎn)P到直線y=x-2的最小距離______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A(-1,2),B(3,1),若直線y=kx與線段AB沒有公共點(diǎn),則k的取值范圍是( 。
A.(-∞,-2)∪(
1
3
,+∞)
B.(-∞,-
1
3
)∪(2,+∞)
C.(-
1
3
,2)
D.(-2,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,則原點(diǎn)與圓的位置關(guān)系是(  )
A.原點(diǎn)在圓上B.原點(diǎn)在圓外
C.原點(diǎn)在圓內(nèi)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C:y=(a>0,b>0)與y軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)稱為“望點(diǎn)”,以“望點(diǎn)”為圓心,凡是與曲線C有公共點(diǎn)的圓,皆稱之為“望圓”,則當(dāng)a=1,b=1時(shí),所有的“望圓”中,面積最小的“望圓”的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C過點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)求圓C的方程;
(2)過點(diǎn)P作兩條相異直線分別與圓C相交于A、B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓O的半徑為3,直徑AB上一點(diǎn)D使=3,E、F為另一直徑的兩個(gè)端點(diǎn),則=(  )
A.-3 B.-4C.-6D.-8

查看答案和解析>>

同步練習(xí)冊(cè)答案